File size: 5,271 Bytes
1ad8180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -*- coding: utf-8 -*-

print('Load libs')
import http.server
import socketserver
import threading
import time

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, T5ForConditionalGeneration, T5Tokenizer
from collections import defaultdict
from bs4 import BeautifulSoup
from threading import Thread
import requests as rq
import random
import torch
import json
import time
import os
import re

import difflib
import logging
logging.getLogger('http.server').setLevel(logging.ERROR)



os.system('cls||clear')

# Constants
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'


def load_model(model_name_or_path):
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path)

    total_params = sum(p.numel() for p in model.parameters())
    wpe_weights = model.get_input_embeddings().weight
    wpe_weights_np = wpe_weights.detach().numpy()
    mt_size = list(wpe_weights.shape)[0]
    model = model.to(DEVICE)
    params = {'model': model_name_or_path, 'size': f'{int(total_params / 10**7) / 100}B', 'text': mt_size, 'device': DEVICE}
    return model, tokenizer, params


def model_log(params):
    model_name = f'Model: {params["model"]}'
    param_size = f'Size model: {params["size"]}'
    max_tokens = f'Maximum Tokens: {params["text"]}'
    device_info = f'Device: {params["device"]}'
    max_length = max([len(model_name), len(param_size), len(max_tokens), len(device_info)])
    padding = ''.zfill(max_length + 4).replace('0', '#')
    model_name = f'# {model_name}{"".zfill(max_length - len(model_name)).replace("0", " ")} #'
    param_size = f'# {param_size}{"".zfill(max_length - len(param_size)).replace("0", " ")} #'
    max_tokens = f'# {max_tokens}{"".zfill(max_length - len(max_tokens)).replace("0", " ")} #'
    device_info = f'# {device_info}{"".zfill(max_length - len(device_info)).replace("0", " ")} #'
    return f'{padding}\n{model_name}\n{param_size}\n{max_tokens}\n{device_info}\n{padding}'

def encode_ids(text, tokenizer):
    return tokenizer.encode(text, return_tensors="pt").to(DEVICE)

def generate_step_by_step(config, model, tokenizer,file):
    if True:
        text_input = config['text']
        input_ids = encode_ids(text_input, tokenizer)
        target = config['maxsize'] - len(input_ids[0])
        current_length = len(input_ids[0])
        for i in range(target):
            output = model.generate(input_ids,
                                    do_sample=config['do_sample'],
                                    temperature=config['temperature'],
                                    top_k=config['top_k'],
                                    top_p=config['top_p'],
                                    max_length=current_length + 6,
                                    pad_token_id=tokenizer.eos_token_id,
                                    num_return_sequences=config['num_return_sequences']
                                    )
            current_length += 4
            text_output = tokenizer.decode(output[0][:current_length])
            generated_text = text_output[len(config['text']):]
            '''
            if generated_text.count('import ') > 2:
                generated_text+='\nИзвените но бот не умеет писать код\n\n'
            if '```python' in generated_text:
                generated_text+='\nИзвените но бот не умеет писать код\n\n'
            '''
            if len(generated_text.split('\n')) != 1:
                return generated_text.split('\n')[0]
            else:
                '''
                cleaned_text, found_repeats = remove_repeated_phrases(generated_text)
                if found_repeats:
                    return cleaned_text
                else:
                '''
                file2=open(file,'w',encoding='utf-8')
                file2.write(text_input+generated_text)
                file2.close()
                
                os.system('cls||clear')
                print(str(text_input+generated_text).replace('Me: ','User: '))

            input_ids = encode_ids(text_output, tokenizer)
        try:
            return generated_text
        except:
            return ''

def botAw(text, model, tokenizer, params,file):
    config = {
        'text': text,
        'do_sample': True,
        'temperature': 0.5,
        'top_k': 20,
        'top_p': 0.9,
        'maxsize': params["text"],
        'num_return_sequences': 1,
    }
    generated_text = generate_step_by_step(config, model, tokenizer,file)
    return generated_text

print('Load GPT')
gpt_model_name = 'ifmain/StableGPT4-Micro-1.6B'
gpt_model, gpt_tokenizer, gpt_params = load_model(gpt_model_name)
print(model_log(gpt_params))
print()


file='file.txt'

try:
    f=open(file,'r',encoding='UTF-8')
    text=f.read()
    f.close()
except:
    f=open(file,'w',encoding='UTF-8')
    f.close()


def var2():
    while True:
        input('Press Enter to process')
        f=open(file,'r',encoding='UTF-8')
        text=f.read()
        f.close()
                
        o=botAw(text, gpt_model, gpt_tokenizer, gpt_params,file)
                
        f=open(file,'w',encoding='UTF-8')
        f.write(text+o)
        f.close()

var2()