File size: 5,271 Bytes
1ad8180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# -*- coding: utf-8 -*-
print('Load libs')
import http.server
import socketserver
import threading
import time
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, T5ForConditionalGeneration, T5Tokenizer
from collections import defaultdict
from bs4 import BeautifulSoup
from threading import Thread
import requests as rq
import random
import torch
import json
import time
import os
import re
import difflib
import logging
logging.getLogger('http.server').setLevel(logging.ERROR)
os.system('cls||clear')
# Constants
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def load_model(model_name_or_path):
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
total_params = sum(p.numel() for p in model.parameters())
wpe_weights = model.get_input_embeddings().weight
wpe_weights_np = wpe_weights.detach().numpy()
mt_size = list(wpe_weights.shape)[0]
model = model.to(DEVICE)
params = {'model': model_name_or_path, 'size': f'{int(total_params / 10**7) / 100}B', 'text': mt_size, 'device': DEVICE}
return model, tokenizer, params
def model_log(params):
model_name = f'Model: {params["model"]}'
param_size = f'Size model: {params["size"]}'
max_tokens = f'Maximum Tokens: {params["text"]}'
device_info = f'Device: {params["device"]}'
max_length = max([len(model_name), len(param_size), len(max_tokens), len(device_info)])
padding = ''.zfill(max_length + 4).replace('0', '#')
model_name = f'# {model_name}{"".zfill(max_length - len(model_name)).replace("0", " ")} #'
param_size = f'# {param_size}{"".zfill(max_length - len(param_size)).replace("0", " ")} #'
max_tokens = f'# {max_tokens}{"".zfill(max_length - len(max_tokens)).replace("0", " ")} #'
device_info = f'# {device_info}{"".zfill(max_length - len(device_info)).replace("0", " ")} #'
return f'{padding}\n{model_name}\n{param_size}\n{max_tokens}\n{device_info}\n{padding}'
def encode_ids(text, tokenizer):
return tokenizer.encode(text, return_tensors="pt").to(DEVICE)
def generate_step_by_step(config, model, tokenizer,file):
if True:
text_input = config['text']
input_ids = encode_ids(text_input, tokenizer)
target = config['maxsize'] - len(input_ids[0])
current_length = len(input_ids[0])
for i in range(target):
output = model.generate(input_ids,
do_sample=config['do_sample'],
temperature=config['temperature'],
top_k=config['top_k'],
top_p=config['top_p'],
max_length=current_length + 6,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=config['num_return_sequences']
)
current_length += 4
text_output = tokenizer.decode(output[0][:current_length])
generated_text = text_output[len(config['text']):]
'''
if generated_text.count('import ') > 2:
generated_text+='\nИзвените но бот не умеет писать код\n\n'
if '```python' in generated_text:
generated_text+='\nИзвените но бот не умеет писать код\n\n'
'''
if len(generated_text.split('\n')) != 1:
return generated_text.split('\n')[0]
else:
'''
cleaned_text, found_repeats = remove_repeated_phrases(generated_text)
if found_repeats:
return cleaned_text
else:
'''
file2=open(file,'w',encoding='utf-8')
file2.write(text_input+generated_text)
file2.close()
os.system('cls||clear')
print(str(text_input+generated_text).replace('Me: ','User: '))
input_ids = encode_ids(text_output, tokenizer)
try:
return generated_text
except:
return ''
def botAw(text, model, tokenizer, params,file):
config = {
'text': text,
'do_sample': True,
'temperature': 0.5,
'top_k': 20,
'top_p': 0.9,
'maxsize': params["text"],
'num_return_sequences': 1,
}
generated_text = generate_step_by_step(config, model, tokenizer,file)
return generated_text
print('Load GPT')
gpt_model_name = 'ifmain/StableGPT4-Micro-1.6B'
gpt_model, gpt_tokenizer, gpt_params = load_model(gpt_model_name)
print(model_log(gpt_params))
print()
file='file.txt'
try:
f=open(file,'r',encoding='UTF-8')
text=f.read()
f.close()
except:
f=open(file,'w',encoding='UTF-8')
f.close()
def var2():
while True:
input('Press Enter to process')
f=open(file,'r',encoding='UTF-8')
text=f.read()
f.close()
o=botAw(text, gpt_model, gpt_tokenizer, gpt_params,file)
f=open(file,'w',encoding='UTF-8')
f.write(text+o)
f.close()
var2() |