File size: 21,192 Bytes
178a1fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
# coding: utf-8
from typing import Optional, List, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from transformers.models.phi3.configuration_phi3 import Phi3Config
from transformers.models.phi3.modeling_phi3 import (
Phi3PreTrainedModel,
Phi3RMSNorm,
Phi3MLP,
Phi3Attention,
# Phi3SdpaAttention,
Phi3RotaryEmbedding,
)
#from models.phi3_config import Phi3Config
#from models.phi3 import (
# Phi3PreTrainedModel,
# Phi3RMSNorm,
# Phi3MLP,
# # Phi3SdpaAttention,
# Phi3Attention,
# Phi3RotaryEmbedding,
#)
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast
from transformers.generation.utils import GenerationMixin
class ResidualNetV2Config(Phi3Config):
model_type = "ResidualNetV2Config"
def __init__(self, **kwargs):
super().__init__(**kwargs)
# ==============
# helpers (差分/マスク, 形状ユーティリティ, optional RoPE)
# ==============
def first_order_diff(x: torch.Tensor) -> torch.Tensor:
# (B,L,H) -> (B,L-1,H)
return x[:, 1:, :] - x[:, :-1, :]
def second_order_diff(x: torch.Tensor) -> torch.Tensor:
# (B,L,H) -> (B,L-2,H): x_{t+2} - 2 x_{t+1} + x_t
return x[:, 2:, :] - 2.0 * x[:, 1:-1, :] + x[:, :-2, :]
def mask_and(*tensors: torch.Tensor) -> torch.Tensor:
# AND を丁寧に(float/bool いずれでも可)
out = tensors[0].bool()
for t in tensors[1:]:
out = out & t.bool()
return out.to(tensors[0].dtype)
def build_mask_for_diff(mask2d: Optional[torch.Tensor], order: int) -> Optional[torch.Tensor]:
if mask2d is None:
return None
if order == 0:
return mask2d
elif order == 1:
return mask_and(mask2d[:, 1:], mask2d[:, :-1])
elif order == 2:
return mask_and(mask2d[:, 2:], mask2d[:, 1:-1], mask2d[:, :-2])
else:
raise ValueError("order must be 0,1,2")
def shape_qkv(x: torch.Tensor, num_heads: int) -> torch.Tensor:
# (B,L,H) -> (B,heads,L,head_dim)
B, L, H = x.shape
head_dim = H // num_heads
x = x.view(B, L, num_heads, head_dim).transpose(1, 2) # (B,heads,L,head_dim)
return x
def unshape_ctx(x: torch.Tensor) -> torch.Tensor:
# (B,heads,L,head_dim) -> (B,L,H)
B, nH, L, d = x.shape
return x.transpose(1, 2).contiguous().view(B, L, nH * d)
# RoPE helper(必要な場合のみ使用)
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
return q_embed, k_embed
# ==============
# Self-Block (Phi-3 部品そのまま)
# ==============
class Phi3SelfBlock(nn.Module):
"""
PreNorm -> Self-Attn(SDPA+RoPE) -> resid -> PreNorm -> MLP -> resid
"""
def __init__(self, config: ResidualNetV2Config, layer_idx: int, rotary_emb: Phi3RotaryEmbedding):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.in_norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# self.attn = Phi3SdpaAttention(config, layer_idx=layer_idx)
self.attn = Phi3Attention(config, layer_idx=layer_idx)
self.dropout_attn = nn.Dropout(config.resid_pdrop)
self.ff_norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = Phi3MLP(config)
self.dropout_mlp = nn.Dropout(config.resid_pdrop)
self.rotary_emb = rotary_emb
def _prepare_4d_mask(self, mask2d, bsz, seqlen, hidden_states):
if mask2d is None:
return None
return _prepare_4d_causal_attention_mask(
mask2d, (bsz, seqlen), hidden_states, past_key_values_length=0, sliding_window=self.config.sliding_window
)
def forward(
self,
hidden_states: torch.Tensor, # (B,L,H)
mask2d: Optional[torch.Tensor], # (B,L)
position_ids: Optional[torch.Tensor],# unused here; we re-make per len
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
x = self.in_norm(hidden_states)
B, L, _ = x.shape
pos = torch.arange(L, device=x.device).unsqueeze(0).expand(B, -1)
attn_mask = self._prepare_4d_mask(mask2d, B, L, x)
position_embeddings = self.rotary_emb(hidden_states, pos)
attn_out, attn_weights = self.attn(
hidden_states=x,
attention_mask=attn_mask,
position_ids=pos,
position_embeddings=position_embeddings,
past_key_value=None,
output_attentions=output_attentions,
use_cache=False,
)
x = hidden_states + self.dropout_attn(attn_out)
h = self.ff_norm(x)
h = self.mlp(h)
x = x + self.dropout_mlp(h)
return x, (attn_weights if output_attentions else None)
# ==============
# Cross-Attention (シンプル実装/GQA対応。既定で RoPE 無し)
# ==============
class SimpleCrossAttention(nn.Module):
"""
Query: x_q (B,Lq,H) Key/Value: x_kv (B,Lk,H)
- num_heads / num_key_value_heads は Phi-3 と同じ設定に合わせる(GQA対応)
- 既定: RoPE 適用なし(decoder-encoder cross は相対位置の意味付けが曖昧なため)。
use_rope_in_cross_attn=True で RoPE を適用可能。
"""
def __init__(self, config: ResidualNetV2Config, rotary_emb: Phi3RotaryEmbedding, use_rope_in_cross_attn: bool = False):
super().__init__()
self.config = config
self.rotary_emb = rotary_emb
self.use_rope = use_rope_in_cross_attn
H = config.hidden_size
nH = config.num_attention_heads
nKV = getattr(config, "num_key_value_heads", nH)
self.nH = nH
self.nKV = nKV
self.groups = nH // nKV
self.head_dim = H // nH
self.q_proj = nn.Linear(H, H, bias=False)
self.k_proj = nn.Linear(H, nKV * self.head_dim, bias=False)
self.v_proj = nn.Linear(H, nKV * self.head_dim, bias=False)
self.o_proj = nn.Linear(H, H, bias=False)
self.dropout = nn.Dropout(config.attention_dropout)
# 追加正規化(安定のため)
self.q_norm = Phi3RMSNorm(H, eps=config.rms_norm_eps)
self.kv_norm = Phi3RMSNorm(H, eps=config.rms_norm_eps)
def _kv_repeat(self, x: torch.Tensor) -> torch.Tensor:
# (B, nKV, Lk, d) -> (B, nH, Lk, d) へ繰り返し
if self.nKV == self.nH:
return x
return x.repeat_interleave(self.groups, dim=1)
def _make_attn_mask_bool(self, enc_mask2d: Optional[torch.Tensor], Lq: int, Lk: int, B: int) -> Optional[torch.Tensor]:
# enc_mask2d: (B,Lk) in {0,1} -> broadcastable bool mask of shape (B,1,Lq,Lk)
if enc_mask2d is None:
return None
m = (~enc_mask2d.bool()).unsqueeze(1).unsqueeze(2) # True=mask
return m.expand(B, 1, Lq, Lk)
def forward(
self,
x_q: torch.Tensor, # (B,Lq,H)
x_kv: torch.Tensor, # (B,Lk,H)
enc_mask2d: Optional[torch.Tensor] = None, # (B,Lk)
) -> torch.Tensor:
B, Lq, H = x_q.shape
Lk = x_kv.size(1)
q = self.q_proj(self.q_norm(x_q)) # (B,Lq,H)
k = self.k_proj(self.kv_norm(x_kv)) # (B,Lk, nKV*Hd)
v = self.v_proj(self.kv_norm(x_kv)) # (B,Lk, nKV*Hd)
q = shape_qkv(q, self.nH) # (B,nH,Lq,Hd)
k = k.view(B, Lk, self.nKV, self.head_dim).transpose(1, 2) # (B,nKV,Lk,Hd)
v = v.view(B, Lk, self.nKV, self.head_dim).transpose(1, 2) # (B,nKV,Lk,Hd)
k = self._kv_repeat(k) # (B,nH,Lk,Hd)
v = self._kv_repeat(v) # (B,nH,Lk,Hd)
if self.use_rope:
# 参考実装:各系列長に合わせて cos/sin を取り、q/k に適用
# Phi3RotaryEmbedding の forward は (x, position_ids) -> (cos, sin) を返す前提
pos_q = torch.arange(Lq, device=x_q.device).unsqueeze(0).expand(B, -1)
pos_k = torch.arange(Lk, device=x_q.device).unsqueeze(0).expand(B, -1)
# ダミーの [B,L,head_dim] を渡して cos/sin を得る(実装に依存するため try/except)
try:
dummy_q = torch.zeros(B, Lq, self.head_dim, device=x_q.device, dtype=x_q.dtype)
dummy_k = torch.zeros(B, Lk, self.head_dim, device=x_q.device, dtype=x_q.dtype)
cos_q, sin_q = self.rotary_emb(dummy_q, pos_q)
cos_k, sin_k = self.rotary_emb(dummy_k, pos_k)
q, k = apply_rotary_pos_emb(q, k, cos_q, sin_k, position_ids=None, unsqueeze_dim=2)
except Exception:
# RoPE 未対応環境では静かにスキップ(Self-Attn 側で RoPE が効いていれば全体としては相対位置信号を保持)
pass
# scaled dot-product attention
attn_mask = self._make_attn_mask_bool(enc_mask2d, Lq, Lk, B) # True=mask
y = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=self.dropout.p if self.training else 0.0, is_causal=False
) # (B,nH,Lq,Hd)
y = unshape_ctx(y) # (B,Lq,H)
y = self.o_proj(y)
return y
# ==============
# v2: 3本の枝を「各3層」通してから、0階に Cross-Attn(←1階) → Cross-Attn(←2階)
# ==============
class ResidualNetV2Model(Phi3PreTrainedModel):
"""
1) embedding -> 0/1/2階差分 3枝
2) 各枝: [SelfBlock] x 3 (同一枝内で3層)
3) x0 に CrossAttn(x1_final) → residual、続けて CrossAttn(x2_final) → residual
出力は x0(原系列長 L)
"""
def __init__(self, config: ResidualNetV2Config, use_rope_in_cross_attn: bool = False):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.rotary_emb = Phi3RotaryEmbedding(config=config)
self.norm_out = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# 各枝 3 層
self.branch0 = nn.ModuleList([Phi3SelfBlock(config, layer_idx=i, rotary_emb=self.rotary_emb) for i in range(3)])
self.branch1 = nn.ModuleList([Phi3SelfBlock(config, layer_idx=100+i, rotary_emb=self.rotary_emb) for i in range(3)])
self.branch2 = nn.ModuleList([Phi3SelfBlock(config, layer_idx=200+i, rotary_emb=self.rotary_emb) for i in range(3)])
# Cross-Attn × 2 (0階 <- 1階, 0階 <- 2階)
self.cross01_norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.cross01 = SimpleCrossAttention(config, self.rotary_emb, use_rope_in_cross_attn)
self.cross12_norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.cross02 = SimpleCrossAttention(config, self.rotary_emb, use_rope_in_cross_attn)
self.dropout = nn.Dropout(config.resid_pdrop)
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # (B,L)
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BaseModelOutput:
output_attentions = False if output_attentions is None else output_attentions
output_hidden_states = False if output_hidden_states is None else output_hidden_states
return_dict = True if return_dict is None else return_dict
if inputs_embeds is None:
x0 = self.embed_tokens(input_ids) # (B,L,H) 0階
else:
x0 = inputs_embeds
B, L, H = x0.shape
m0 = attention_mask if attention_mask is not None else torch.ones(B, L, device=x0.device, dtype=torch.long)
# 1階/2階差分
x1 = first_order_diff(x0) # (B,L-1,H)
x2 = second_order_diff(x0) # (B,L-2,H)
m1 = build_mask_for_diff(m0, 1)
m2 = build_mask_for_diff(m0, 2)
# 各枝 3 層
for blk in self.branch0:
x0, _ = blk(x0, m0, None, output_attentions=False)
for blk in self.branch1:
x1, _ = blk(x1, m1, None, output_attentions=False)
for blk in self.branch2:
x2, _ = blk(x2, m2, None, output_attentions=False)
# CrossAttn: x0 <- x1
x0 = x0 + self.dropout(self.cross01(self.cross01_norm(x0), x1, enc_mask2d=m1))
# CrossAttn: x0 <- x2
x0 = x0 + self.dropout(self.cross02(self.cross12_norm(x0), x2, enc_mask2d=m2))
x_out = self.norm_out(x0)
if not return_dict:
return (x_out,)
return BaseModelOutput(
last_hidden_state=x_out,
hidden_states=None,
attentions=None,
)
class ResidualNetV2ForCausalLM(Phi3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: ResidualNetV2Config, use_rope_in_cross_attn: bool = False):
super().__init__(config)
self.model = ResidualNetV2Model(config, use_rope_in_cross_attn=use_rope_in_cross_attn)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# weight tying
self.lm_head.weight = self.model.embed_tokens.weight
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
inputs_embeds=None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
out = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=kwargs.get("output_attentions", False),
output_hidden_states=kwargs.get("output_hidden_states", False),
return_dict=True,
)
logits = self.lm_head(out.last_hidden_state).float()
loss = None
if labels is not None:
shift_logits = logits[:, :-1, :].contiguous()
shift_labels = labels[:, 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.vocab_size), shift_labels.view(-1))
return CausalLMOutputWithPast(
loss=loss, logits=logits, past_key_values=None, hidden_states=None, attentions=None
)
@property
def base_model(self):
return self.model
# ==============
# v3: 「各枝1層 + x0<-x1 Cross + x0<-x2 Cross」を1ブロックとして **3回** 反復
# ==============
class ResidualNetV3Model(Phi3PreTrainedModel):
"""
1 block = { 3枝: SelfBlock各1層 → x0<-x1 Cross → x0<-x2 Cross }
これを 3 回繰り返す(早期融合 + 反復洗練)
"""
def __init__(self, config: ResidualNetV2Config, use_rope_in_cross_attn: bool = False):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.rotary_emb = Phi3RotaryEmbedding(config=config)
self.norm_out = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.dropout = nn.Dropout(config.resid_pdrop)
# 3 ブロック分の層を用意(枝それぞれ + CrossAttn×2)
self.blocks_branch0 = nn.ModuleList([Phi3SelfBlock(config, layer_idx=10+i, rotary_emb=self.rotary_emb) for i in range(3)])
self.blocks_branch1 = nn.ModuleList([Phi3SelfBlock(config, layer_idx=110+i, rotary_emb=self.rotary_emb) for i in range(3)])
self.blocks_branch2 = nn.ModuleList([Phi3SelfBlock(config, layer_idx=210+i, rotary_emb=self.rotary_emb) for i in range(3)])
self.cross_norm_01 = nn.ModuleList([Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) for _ in range(3)])
self.cross_01 = nn.ModuleList([SimpleCrossAttention(config, self.rotary_emb, use_rope_in_cross_attn) for _ in range(3)])
self.cross_norm_02 = nn.ModuleList([Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) for _ in range(3)])
self.cross_02 = nn.ModuleList([SimpleCrossAttention(config, self.rotary_emb, use_rope_in_cross_attn) for _ in range(3)])
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BaseModelOutput:
output_attentions = False if output_attentions is None else output_attentions
output_hidden_states = False if output_hidden_states is None else output_hidden_states
return_dict = True if return_dict is None else return_dict
if inputs_embeds is None:
x0 = self.embed_tokens(input_ids)
else:
x0 = inputs_embeds
B, L, H = x0.shape
m0 = attention_mask if attention_mask is not None else torch.ones(B, L, device=x0.device, dtype=torch.long)
# 初回の差分(1,2階)は x0 から
def mk_x1x2(x0, m0):
return first_order_diff(x0), second_order_diff(x0), build_mask_for_diff(m0, 1), build_mask_for_diff(m0, 2)
x1, x2, m1, m2 = mk_x1x2(x0, m0)
# 3 ブロック反復
for i in range(3):
# 各枝 1 層
x0, _ = self.blocks_branch0[i](x0, m0, None, output_attentions=False)
x1, _ = self.blocks_branch1[i](x1, m1, None, output_attentions=False)
x2, _ = self.blocks_branch2[i](x2, m2, None, output_attentions=False)
# Cross: x0 <- x1, ついで x0 <- x2
x0 = x0 + self.dropout(self.cross_01[i](self.cross_norm_01[i](x0), x1, enc_mask2d=m1))
x0 = x0 + self.dropout(self.cross_02[i](self.cross_norm_02[i](x0), x2, enc_mask2d=m2))
# 次ブロック用に 1/2階差分を「最新の x0」から再計算する手もある
# (Down(2) 的な早期融合→再分解の設計に合わせたい場合)
# ここでは「枝連鎖の継続」を優先し、x1/x2 は枝内の連続層として進める。
# もし再分解を望むなら下記を有効化:
# x1, x2, m1, m2 = mk_x1x2(x0, m0)
x_out = self.norm_out(x0)
if not return_dict:
return (x_out,)
return BaseModelOutput(
last_hidden_state=x_out,
hidden_states=None,
attentions=None,
)
class ResidualNetV3ForCausalLM(Phi3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: ResidualNetV2Config, use_rope_in_cross_attn: bool = False):
super().__init__(config)
self.model = ResidualNetV3Model(config, use_rope_in_cross_attn=use_rope_in_cross_attn)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.lm_head.weight = self.model.embed_tokens.weight
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
inputs_embeds=None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
out = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=kwargs.get("output_attentions", False),
output_hidden_states=kwargs.get("output_hidden_states", False),
return_dict=True,
)
logits = self.lm_head(out.last_hidden_state).float()
loss = None
if labels is not None:
shift_logits = logits[:, :-1, :].contiguous()
shift_labels = labels[:, 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.vocab_size), shift_labels.view(-1))
return CausalLMOutputWithPast(
loss=loss, logits=logits, past_key_values=None, hidden_states=None, attentions=None
)
@property
def base_model(self):
return self.model
|