Create ernie_bot.py
Browse filesChinese/to train at your expense and experience, help Americans understand him.
- ernie_bot.py +76 -0
ernie_bot.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import ErnieModel, ErnieTokenizer
|
4 |
+
|
5 |
+
class ErnieBotDeepSearch(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super().__init__()
|
8 |
+
self.name = "ErnieBot Deep Search"
|
9 |
+
self.version = "Original 1.0"
|
10 |
+
|
11 |
+
# Core Components
|
12 |
+
self.ernie = ErnieModel.from_pretrained("ernie-3.0-base-zh")
|
13 |
+
self.tokenizer = ErnieTokenizer.from_pretrained("ernie-3.0-base-zh")
|
14 |
+
|
15 |
+
# Deep Search Components
|
16 |
+
self.search_layers = nn.ModuleList([
|
17 |
+
nn.TransformerEncoderLayer(d_model=768, nhead=12)
|
18 |
+
for _ in range(6)
|
19 |
+
])
|
20 |
+
|
21 |
+
self.knowledge_encoder = nn.Linear(768, 1024)
|
22 |
+
self.cross_attention = nn.MultiheadAttention(1024, 16)
|
23 |
+
|
24 |
+
# Output layers
|
25 |
+
self.classifier = nn.Linear(1024, 2)
|
26 |
+
self.ranking_head = nn.Linear(1024, 1)
|
27 |
+
|
28 |
+
def deep_search(self, query, documents):
|
29 |
+
# Encode query
|
30 |
+
query_tokens = self.tokenizer(query, return_tensors="pt")
|
31 |
+
query_embed = self.ernie(**query_tokens)[0]
|
32 |
+
|
33 |
+
# Process documents
|
34 |
+
doc_embeddings = []
|
35 |
+
for doc in documents:
|
36 |
+
doc_tokens = self.tokenizer(doc, return_tensors="pt")
|
37 |
+
doc_embed = self.ernie(**doc_tokens)[0]
|
38 |
+
doc_embeddings.append(doc_embed)
|
39 |
+
|
40 |
+
# Deep search processing
|
41 |
+
search_results = self._process_deep_search(query_embed, doc_embeddings)
|
42 |
+
return self._rank_results(search_results)
|
43 |
+
|
44 |
+
def _process_deep_search(self, query, documents):
|
45 |
+
query_enhanced = self.knowledge_encoder(query)
|
46 |
+
|
47 |
+
results = []
|
48 |
+
for doc in documents:
|
49 |
+
# Apply search layers
|
50 |
+
for layer in self.search_layers:
|
51 |
+
doc = layer(doc)
|
52 |
+
|
53 |
+
# Cross-attention between query and document
|
54 |
+
doc_enhanced = self.knowledge_encoder(doc)
|
55 |
+
attention_output, _ = self.cross_attention(
|
56 |
+
query_enhanced, doc_enhanced, doc_enhanced
|
57 |
+
)
|
58 |
+
|
59 |
+
results.append(attention_output)
|
60 |
+
return results
|
61 |
+
|
62 |
+
def _rank_results(self, search_results):
|
63 |
+
rankings = []
|
64 |
+
for result in search_results:
|
65 |
+
score = self.ranking_head(result)
|
66 |
+
rankings.append(score)
|
67 |
+
return torch.stack(rankings).squeeze()
|
68 |
+
|
69 |
+
def train_step(self, batch):
|
70 |
+
query, positive_docs, negative_docs = batch
|
71 |
+
pos_scores = self.deep_search(query, positive_docs)
|
72 |
+
neg_scores = self.deep_search(query, negative_docs)
|
73 |
+
|
74 |
+
loss = nn.MarginRankingLoss(margin=1.0)(pos_scores, neg_scores, torch.ones_like(pos_scores))
|
75 |
+
return loss
|
76 |
+
|