--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10000 - loss:MultipleNegativesRankingLoss widget: - source_sentence: an elephant with a leaf on its back sentences: - an elephant is walking through the woods - a white truck with a white sign on it - a bathroom with a tub and sink - source_sentence: a man and woman hugging sentences: - a couple hugging in the street - a 3d model of a robot in purple and silver - a woman jumping in the air on a field - source_sentence: a silhouette of a man holding a sword in the sky sentences: - strawberry ice cream on a plate with strawberries - a banana sitting on a chair - a silhouette of a man holding a sword in the sky - source_sentence: a girl in a chinese costume holding a spear sentences: - a young girl in a traditional asian dress holding a stick - a man is chopping a piece of wood on a cutting board - a surfer riding a large wave on a surfboard - source_sentence: a bathroom with a bathtub and toilet sentences: - a bathroom with a white tub and sink - a kitchen with stainless steel appliances and wood cabinets - a woman in pink lingerie with a flower crown --- # SentenceTransformer based on sentence-transformers/paraphrase-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("iccv2025submission/finetuned-caption-embedding") # Run inference sentences = [ 'a bathroom with a bathtub and toilet', 'a bathroom with a white tub and sink', 'a woman in pink lingerie with a flower crown', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10,000 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:----------------------------------------------------|:-----------------------------------------------------------------------| | two women cutting a cake | two women cutting a cake | | a man with long white hair and a beard | a man with a long white beard | | a bench is sitting on the sidewalk | a bench is sitting on the sidewalk in front of a building | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 140 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 140 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:--------:|:-----:|:-------------:| | 3.1847 | 500 | 0.1576 | | 6.3694 | 1000 | 0.1099 | | 9.5541 | 1500 | 0.0799 | | 12.7389 | 2000 | 0.0627 | | 15.9236 | 2500 | 0.0569 | | 19.1083 | 3000 | 0.0503 | | 22.2930 | 3500 | 0.043 | | 25.4777 | 4000 | 0.041 | | 28.6624 | 4500 | 0.0357 | | 31.8471 | 5000 | 0.0338 | | 35.0318 | 5500 | 0.0326 | | 38.2166 | 6000 | 0.0299 | | 41.4013 | 6500 | 0.0319 | | 44.5860 | 7000 | 0.0286 | | 47.7707 | 7500 | 0.0266 | | 50.9554 | 8000 | 0.0269 | | 54.1401 | 8500 | 0.0253 | | 57.3248 | 9000 | 0.0264 | | 60.5096 | 9500 | 0.0247 | | 63.6943 | 10000 | 0.0235 | | 66.8790 | 10500 | 0.0241 | | 70.0637 | 11000 | 0.0224 | | 73.2484 | 11500 | 0.0208 | | 76.4331 | 12000 | 0.0215 | | 79.6178 | 12500 | 0.0224 | | 82.8025 | 13000 | 0.0204 | | 85.9873 | 13500 | 0.0185 | | 89.1720 | 14000 | 0.02 | | 92.3567 | 14500 | 0.0189 | | 95.5414 | 15000 | 0.0191 | | 98.7261 | 15500 | 0.0186 | | 101.9108 | 16000 | 0.0183 | | 105.0955 | 16500 | 0.019 | | 108.2803 | 17000 | 0.0162 | | 111.4650 | 17500 | 0.0181 | | 114.6497 | 18000 | 0.0173 | | 117.8344 | 18500 | 0.0187 | | 121.0191 | 19000 | 0.0159 | | 124.2038 | 19500 | 0.0172 | | 127.3885 | 20000 | 0.0164 | | 130.5732 | 20500 | 0.0168 | | 133.7580 | 21000 | 0.0157 | | 136.9427 | 21500 | 0.0156 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```