Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- medical-imaging
|
| 5 |
+
- polyp-detection
|
| 6 |
+
- colonoscopy
|
| 7 |
+
- segmentation
|
| 8 |
+
- pytorch
|
| 9 |
+
- ducknet
|
| 10 |
+
- kvasir-seg
|
| 11 |
+
task: image-segmentation
|
| 12 |
+
widget:
|
| 13 |
+
- src: https://example.com/colonoscopy-image.jpg
|
| 14 |
+
example_title: "Colonoscopy Image"
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# π¦ Duck-Net: Polyp Segmentation Model
|
| 18 |
+
|
| 19 |
+

|
| 20 |
+

|
| 21 |
+

|
| 22 |
+

|
| 23 |
+
|
| 24 |
+
## π― Model Description
|
| 25 |
+
|
| 26 |
+
This is a **Duck-Net** model fine-tuned for polyp segmentation in colonoscopy images. The model is based on a U-Net architecture with Duck-inspired multi-scale feature extraction blocks for superior medical image segmentation performance.
|
| 27 |
+
|
| 28 |
+
### π Model Performance
|
| 29 |
+
|
| 30 |
+
- **Validation Dice Coefficient**: 92.88%
|
| 31 |
+
- **Validation Jaccard Index**: 48.92%
|
| 32 |
+
- **Dataset**: Kvasir-SEG (1000 colonoscopy images)
|
| 33 |
+
- **Training Time**: ~83 minutes on GPU
|
| 34 |
+
- **Model Size**: ~29.6 MB
|
| 35 |
+
|
| 36 |
+
## π Quick Start
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from huggingface_hub import hf_hub_download
|
| 40 |
+
import torch
|
| 41 |
+
import torch.nn as nn
|
| 42 |
+
|
| 43 |
+
# Define the model architecture
|
| 44 |
+
class DuckNet(nn.Module):
|
| 45 |
+
def __init__(self, img_size=(256, 256), num_classes=3):
|
| 46 |
+
super(DuckNet, self).__init__()
|
| 47 |
+
# ... (model definition)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
# ... (forward pass)
|
| 51 |
+
return torch.sigmoid(output)
|
| 52 |
+
|
| 53 |
+
# Download and load model
|
| 54 |
+
model_path = hf_hub_download(
|
| 55 |
+
repo_id="ibrahim313/ducknet-polyp-segmentation",
|
| 56 |
+
filename="pytorch_model.bin"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
model = DuckNet(img_size=(256, 256), num_classes=3)
|
| 60 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
| 61 |
+
model.eval()
|
| 62 |
+
|
| 63 |
+
# Inference
|
| 64 |
+
import albumentations as A
|
| 65 |
+
from albumentations.pytorch import ToTensorV2
|
| 66 |
+
|
| 67 |
+
transform = A.Compose([
|
| 68 |
+
A.Resize(256, 256),
|
| 69 |
+
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 70 |
+
ToTensorV2()
|
| 71 |
+
])
|
| 72 |
+
|
| 73 |
+
# Process image
|
| 74 |
+
transformed = transform(image=your_image)
|
| 75 |
+
input_tensor = transformed['image'].unsqueeze(0)
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
prediction = model(input_tensor)
|
| 79 |
+
binary_mask = (prediction > 0.5).float()
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
## ποΈ Model Architecture
|
| 83 |
+
|
| 84 |
+
This Duck-Net implementation features:
|
| 85 |
+
|
| 86 |
+
1. **Encoder-Decoder Structure**: U-Net based architecture
|
| 87 |
+
2. **Multi-scale Features**: Duck-inspired feature extraction
|
| 88 |
+
3. **Skip Connections**: Direct feature transfer between encoder and decoder
|
| 89 |
+
4. **Batch Normalization**: Stable training and inference
|
| 90 |
+
5. **Sigmoid Activation**: Multi-class segmentation output
|
| 91 |
+
|
| 92 |
+
### Key Features
|
| 93 |
+
|
| 94 |
+
- **Input Size**: 256Γ256Γ3 (RGB images)
|
| 95 |
+
- **Output**: 256Γ256Γ3 (Multi-class segmentation mask)
|
| 96 |
+
- **Parameters**: ~7,766,051
|
| 97 |
+
- **Architecture**: Duck-Net (U-Net variant)
|
| 98 |
+
|
| 99 |
+
## π Training Details
|
| 100 |
+
|
| 101 |
+
### Dataset
|
| 102 |
+
- **Source**: Kvasir-SEG dataset
|
| 103 |
+
- **Total Images**: 1000 colonoscopy images with polyp annotations
|
| 104 |
+
- **Split**: 800 training, 100 validation, 100 test
|
| 105 |
+
- **Classes**: Background, Polyp, Other tissue
|
| 106 |
+
|
| 107 |
+
### Training Configuration
|
| 108 |
+
- **Optimizer**: Adam (lr=0.001)
|
| 109 |
+
- **Loss Function**: Jaccard Coefficient Loss
|
| 110 |
+
- **Batch Size**: 8
|
| 111 |
+
- **Epochs**: 50
|
| 112 |
+
- **Hardware**: Tesla P100 GPU
|
| 113 |
+
- **Framework**: Originally TensorFlow/Keras, converted to PyTorch
|
| 114 |
+
|
| 115 |
+
## π» Usage Example
|
| 116 |
+
|
| 117 |
+
```python
|
| 118 |
+
import cv2
|
| 119 |
+
import numpy as np
|
| 120 |
+
from PIL import Image
|
| 121 |
+
|
| 122 |
+
def predict_polyp(image_path, model, threshold=0.5):
|
| 123 |
+
# Load image
|
| 124 |
+
image = cv2.imread(image_path)
|
| 125 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 126 |
+
|
| 127 |
+
# Preprocess
|
| 128 |
+
transformed = transform(image=image)
|
| 129 |
+
input_tensor = transformed['image'].unsqueeze(0)
|
| 130 |
+
|
| 131 |
+
# Predict
|
| 132 |
+
model.eval()
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
prediction = model(input_tensor)
|
| 135 |
+
binary_mask = (prediction > threshold).float()
|
| 136 |
+
|
| 137 |
+
return binary_mask.squeeze().numpy()
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
## β οΈ Medical Disclaimer
|
| 141 |
+
|
| 142 |
+
**Important**: This model is for research and educational purposes only. It should not be used for clinical diagnosis or treatment decisions. Always consult qualified medical professionals for clinical applications.
|
| 143 |
+
|
| 144 |
+
## π Citation
|
| 145 |
+
|
| 146 |
+
If you use this model in your research, please cite:
|
| 147 |
+
|
| 148 |
+
```bibtex
|
| 149 |
+
@misc{ducknet_polyp_2024,
|
| 150 |
+
title={Duck-Net for Polyp Segmentation in Colonoscopy Images},
|
| 151 |
+
author={Ibrahim313},
|
| 152 |
+
year={2024},
|
| 153 |
+
howpublished={Hugging Face Model Hub},
|
| 154 |
+
url={https://huggingface.co/ibrahim313/ducknet-polyp-segmentation}
|
| 155 |
+
}
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
## π₯ Model Card Authors
|
| 159 |
+
|
| 160 |
+
- **Developed by**: ibrahim313
|
| 161 |
+
- **Model Type**: Convolutional Neural Network (Duck-Net)
|
| 162 |
+
- **License**: Apache 2.0
|
| 163 |
+
- **Repository**: https://huggingface.co/ibrahim313/ducknet-polyp-segmentation
|
| 164 |
+
|
| 165 |
+
## π§ Technical Specifications
|
| 166 |
+
|
| 167 |
+
| Specification | Value |
|
| 168 |
+
|---------------|-------|
|
| 169 |
+
| Input Resolution | 256Γ256 |
|
| 170 |
+
| Input Channels | 3 (RGB) |
|
| 171 |
+
| Output Channels | 3 (Multi-class) |
|
| 172 |
+
| Model Size | ~29.6 MB |
|
| 173 |
+
| Parameters | 7,766,051 |
|
| 174 |
+
| Inference Time | <1 second (CPU) |
|
| 175 |
+
| Memory Usage | ~2GB (inference) |
|
| 176 |
+
|
| 177 |
+
## π₯ Applications
|
| 178 |
+
|
| 179 |
+
- Colonoscopy image analysis
|
| 180 |
+
- Polyp detection and segmentation
|
| 181 |
+
- Medical imaging research
|
| 182 |
+
- Computer-aided diagnosis (research only)
|
| 183 |
+
|
| 184 |
+
## π€ Contact
|
| 185 |
+
|
| 186 |
+
For questions or issues, please open an issue in the repository or contact the model author.
|