--- license: apache-2.0 language: - en tags: - Pytorch - mmsegmentation - segmentation - burn scars - Geospatial - Foundation model datasets: - ibm-nasa-geospatial/hls_burn_scars metrics: - accuracy - IoU - F1 Score --- ### Model and Inputs The pretrained [Prithvi-100m](https://huggingface.co/ibm-nasa-geospatial/burn-scar-Prithvi-100M) parameter model is used for finetuning over the Burn Scar task on HLS data. The finetuning expected an input tile of 512x512x6, where 512 is the height and width and 6 is the number of bands. The bands are 1. Blue 2. Green 3. Red 4. Narrow NIR 5. SWIR 1 6. SWIR 2 ### Code Code for Finetuning is available through [github](https://github.com/NASA-IMPACT/hls-foundation-os/tree/main/fine-tuning-examples) Configuration used for finetuning is available through [config](https://github.com/NASA-IMPACT/hls-foundation-os/blob/main/fine-tuning-examples/configs/firescars_config.py ) To run inference, first install dependencies ``` mamba create -n prithvi-burn-scar python=3.10 torchvision numpy matplotlib rasterio torchmetrics openmim mamba activate prithvi-burn-scar mim install mmcv-full==1.5 ``` #### Instructions for downloading from [HuggingFace datasets](https://huggingface.co/datasets) 1. Create account on https://huggingface.co/join 2. Install `git` following https://git-scm.com/downloads 3. Install git-lfs with `sudo apt install git-lfs` and `git lfs install` 4. Run the following command to download the HLS datasets. You may need to enter your HuggingFace username/password to do the `git clone`. ``` mkdir data cd data/ git clone https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars burn_scars tar -xzvf burn_scars/hls_burn_scars.tar.gz -C data/ ls -lh data/ ``` With the datasets and the environment, you can now run the inference script. ``` ``` ### Results