--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - iFaz/Whisper_Compatible_SER_benchmark metrics: - wer model-index: - name: whisper-base-SER-v5_1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Whisper_Compatible_SER_benchmark(Not train_augmented) type: iFaz/Whisper_Compatible_SER_benchmark args: 'config: en, split: test' metrics: - name: Wer type: wer value: 236.0 --- # whisper-base-SER-v5_1 ## This fine-tune is corrupted (because i used mistakenly only 100 rows for training๐Ÿ˜‘๐Ÿ˜‘๐Ÿ˜‘ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657064196bbfca646130a2d4/udmlWCInAAaOMBCWwKBBo.png) ) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Whisper_Compatible_SER_benchmark(Not train_augmented) dataset. It achieves the following results on the evaluation set: - Loss: 0.3675 - Wer: 236.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-----:| | 0.0004 | 250.0 | 1000 | 0.2744 | 665.0 | | 0.0001 | 500.0 | 2000 | 0.3142 | 413.0 | | 0.0 | 750.0 | 3000 | 0.3356 | 239.0 | | 0.0 | 1000.0 | 4000 | 0.3451 | 239.0 | | 0.0 | 1250.0 | 5000 | 0.3657 | 236.0 | | 0.0 | 1500.0 | 6000 | 0.3675 | 236.0 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0