huyai123's picture
Update handler.py
41181c9 verified
import os
import torch
from PIL import Image
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from io import BytesIO
import logging
class EndpointHandler:
def __init__(self, model_dir="huyai123/Flux.1-dev-Image-Upscaler"):
# Set memory limit
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Access the environment variable
HF_TOKEN = os.getenv('HF_TOKEN')
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set")
logging.basicConfig(level=logging.INFO)
logging.info("Using HF_TOKEN")
# Clear GPU memory
torch.cuda.empty_cache()
# Load model and pipeline
self.controlnet = FluxControlNetModel.from_pretrained(
model_dir, torch_dtype=torch.float16, use_auth_token=HF_TOKEN
)
self.pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=self.controlnet,
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
self.pipe.to("cuda")
self.pipe.enable_attention_slicing("auto")
self.pipe.enable_sequential_cpu_offload()
self.pipe.enable_memory_efficient_attention()
def preprocess(self, data):
image_file = data.get("control_image", None)
if not image_file:
raise ValueError("Missing control_image in input.")
image = Image.open(image_file)
return image.resize((512, 512)) # Resize to reduce memory usage
def postprocess(self, output):
buffer = BytesIO()
output.save(buffer, format="PNG")
buffer.seek(0)
return buffer
def inference(self, data):
control_image = self.preprocess(data)
torch.cuda.empty_cache()
output_image = self.pipe(
prompt=data.get("prompt", ""),
control_image=control_image,
controlnet_conditioning_scale=0.5,
num_inference_steps=10,
height=control_image.size[1],
width=control_image.size[0],
).images[0]
return self.postprocess(output_image)
if __name__ == "__main__":
data = {'control_image': 'path/to/your/image.png', 'prompt': 'Your prompt here'}
handler = EndpointHandler()
output = handler.inference(data)
print(output)