File size: 1,866 Bytes
b9eaad3
 
 
 
 
 
f65ae98
b9eaad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59b2fa
b9eaad3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
import pandas as pd
from neural_network import create_neural_network_model  # Import your custom model function

# Load training data from CSV using pandas
training_data = pd.read_csv('sensor_input.csv')

# Assuming your training data has columns like 'features', 'labels', and 'rewards'
train_inputs = training_data['features']  # Replace 'features' with the actual column name
train_labels = training_data['labels']    # Replace 'labels' with the actual column name
train_rewards = training_data['rewards']  # Replace 'rewards' with the actual column name

# Define your model architecture
seq_length = 128  # Example sequence length
d_model = 512     # Example dimension
action_space_size = 10  # Example action space size

model = create_neural_network_model(seq_length, d_model, action_space_size)

# Define loss functions and metrics
losses = {'Output': 'categorical_crossentropy', 'Reward': 'mean_squared_error'}
metrics = {'Output': 'accuracy'}

# Compile the model
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt, loss=losses, metrics=metrics)

# Define callbacks (e.g., ModelCheckpoint, EarlyStopping) as needed
callbacks = [
    ModelCheckpoint(filepath='model_weights.h5', save_best_only=True),
    EarlyStopping(patience=5, restore_best_weights=True)
]

# Train the model
history = model.fit(
    x=train_inputs,  # Your training data
    y={'Output': train_labels, 'Reward': train_rewards},  # Your training labels and rewards
    batch_size=32,
    epochs=50,
    callbacks=callbacks
)

# Save the trained model
model.save('Sephs_model.h5')

# You can also save training history for analysis and plotting
import pickle
with open('training_history.pickle', 'wb') as history_file:
    pickle.dump(history.history, history_file)