--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-vi-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 0.629702753098607 --- # wav2vec2-large-xls-r-300m-vi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.5942 - Wer: 0.6297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.514 | 4.6 | 400 | 3.3352 | 1.0 | | 0.9018 | 9.2 | 800 | 1.4660 | 0.7177 | | 0.2284 | 13.79 | 1200 | 1.5156 | 0.6873 | | 0.138 | 18.39 | 1600 | 1.5294 | 0.6599 | | 0.0959 | 22.99 | 2000 | 1.5876 | 0.6485 | | 0.0703 | 27.59 | 2400 | 1.5942 | 0.6297 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.7.dev0 - Tokenizers 0.14.1