File size: 4,857 Bytes
1670505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: mit
base_model: hung200504/bert-squadv2
tags:
- generated_from_trainer
model-index:
- name: bert-covid-39
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-covid-39

This model is a fine-tuned version of [hung200504/bert-squadv2](https://huggingface.co/hung200504/bert-squadv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7252

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.5591        | 0.03  | 5    | 1.2012          |
| 1.2596        | 0.06  | 10   | 1.4381          |
| 1.0125        | 0.08  | 15   | 1.0124          |
| 1.2428        | 0.11  | 20   | 0.9407          |
| 1.2052        | 0.14  | 25   | 0.9740          |
| 0.6547        | 0.17  | 30   | 1.0313          |
| 0.7966        | 0.2   | 35   | 0.9168          |
| 0.8611        | 0.22  | 40   | 0.8861          |
| 1.7148        | 0.25  | 45   | 0.7733          |
| 1.2914        | 0.28  | 50   | 1.0139          |
| 1.6152        | 0.31  | 55   | 0.7834          |
| 0.9688        | 0.34  | 60   | 0.7517          |
| 0.909         | 0.37  | 65   | 0.8122          |
| 0.7823        | 0.39  | 70   | 0.7512          |
| 0.8386        | 0.42  | 75   | 0.7157          |
| 0.7884        | 0.45  | 80   | 0.7113          |
| 0.9594        | 0.48  | 85   | 0.7621          |
| 0.8959        | 0.51  | 90   | 0.7472          |
| 0.5305        | 0.53  | 95   | 0.8187          |
| 0.8252        | 0.56  | 100  | 0.7381          |
| 1.6898        | 0.59  | 105  | 0.7426          |
| 1.0982        | 0.62  | 110  | 0.7209          |
| 1.1293        | 0.65  | 115  | 0.7321          |
| 0.4554        | 0.67  | 120  | 0.6945          |
| 1.2818        | 0.7   | 125  | 0.8030          |
| 0.3392        | 0.73  | 130  | 0.8722          |
| 1.3006        | 0.76  | 135  | 0.7928          |
| 0.853         | 0.79  | 140  | 0.8538          |
| 0.8214        | 0.81  | 145  | 0.8217          |
| 1.0063        | 0.84  | 150  | 0.8014          |
| 0.5788        | 0.87  | 155  | 0.7998          |
| 0.5167        | 0.9   | 160  | 0.8472          |
| 1.2736        | 0.93  | 165  | 0.7444          |
| 0.5527        | 0.96  | 170  | 0.7315          |
| 1.0421        | 0.98  | 175  | 0.7767          |
| 0.3837        | 1.01  | 180  | 0.7005          |
| 0.5765        | 1.04  | 185  | 0.7062          |
| 0.6094        | 1.07  | 190  | 0.7248          |
| 0.3476        | 1.1   | 195  | 0.7205          |
| 0.6104        | 1.12  | 200  | 0.7028          |
| 0.681         | 1.15  | 205  | 0.6956          |
| 0.9434        | 1.18  | 210  | 0.7217          |
| 0.3486        | 1.21  | 215  | 0.7119          |
| 0.311         | 1.24  | 220  | 0.6895          |
| 0.4587        | 1.26  | 225  | 0.7079          |
| 0.8009        | 1.29  | 230  | 0.7364          |
| 0.511         | 1.32  | 235  | 0.7349          |
| 0.4046        | 1.35  | 240  | 0.7259          |
| 0.6761        | 1.38  | 245  | 0.7351          |
| 0.3349        | 1.4   | 250  | 0.7341          |
| 0.8276        | 1.43  | 255  | 0.7304          |
| 0.1637        | 1.46  | 260  | 0.7316          |
| 0.2998        | 1.49  | 265  | 0.7621          |
| 0.6454        | 1.52  | 270  | 0.7695          |
| 0.336         | 1.54  | 275  | 0.7485          |
| 0.3583        | 1.57  | 280  | 0.7430          |
| 0.3906        | 1.6   | 285  | 0.7457          |
| 0.6049        | 1.63  | 290  | 0.7502          |
| 0.7388        | 1.66  | 295  | 0.7679          |
| 0.5119        | 1.69  | 300  | 0.7832          |
| 0.7891        | 1.71  | 305  | 0.7909          |
| 0.5389        | 1.74  | 310  | 0.7808          |
| 0.235         | 1.77  | 315  | 0.7770          |
| 0.7812        | 1.8   | 320  | 0.7598          |
| 0.4588        | 1.83  | 325  | 0.7491          |
| 0.6632        | 1.85  | 330  | 0.7418          |
| 0.8314        | 1.88  | 335  | 0.7369          |
| 0.78          | 1.91  | 340  | 0.7365          |
| 0.6049        | 1.94  | 345  | 0.7322          |
| 0.5554        | 1.97  | 350  | 0.7271          |
| 0.9808        | 1.99  | 355  | 0.7252          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1