Update handler.py
Browse files- handler.py +16 -6
handler.py
CHANGED
@@ -11,7 +11,7 @@ class EndpointHandler():
|
|
11 |
model_id = path
|
12 |
self.model = LlavaForConditionalGeneration.from_pretrained(
|
13 |
model_id,
|
14 |
-
torch_dtype=torch.float32
|
15 |
low_cpu_mem_usage=True,
|
16 |
load_in_4bit=True
|
17 |
)
|
@@ -23,9 +23,19 @@ class EndpointHandler():
|
|
23 |
|
24 |
outputs = []
|
25 |
for link in parameters:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return outputs
|
|
|
11 |
model_id = path
|
12 |
self.model = LlavaForConditionalGeneration.from_pretrained(
|
13 |
model_id,
|
14 |
+
torch_dtype=torch.float32,
|
15 |
low_cpu_mem_usage=True,
|
16 |
load_in_4bit=True
|
17 |
)
|
|
|
23 |
|
24 |
outputs = []
|
25 |
for link in parameters:
|
26 |
+
try:
|
27 |
+
# Fetch image from URL
|
28 |
+
response = requests.get(link, stream=True)
|
29 |
+
response.raise_for_status() # Raise an exception for 4xx or 5xx status codes
|
30 |
+
raw_image = Image.open(response.raw)
|
31 |
+
|
32 |
+
# Process image and generate output
|
33 |
+
inputs = self.processor(prompt, raw_image, return_tensors='pt').to(0, torch.float32)
|
34 |
+
output = self.model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
35 |
+
readable = self.processor.decode(output[0][2:], skip_special_tokens=True)
|
36 |
+
outputs.append(readable)
|
37 |
+
except Exception as e:
|
38 |
+
# Handle any exceptions and log the error
|
39 |
+
outputs.append(f"Error processing image from {link}: {str(e)}")
|
40 |
+
|
41 |
return outputs
|