Update handler.py
Browse files- handler.py +2 -20
handler.py
CHANGED
@@ -14,7 +14,7 @@ class EndpointHandler():
|
|
14 |
).to(0)
|
15 |
processor = AutoProcessor.from_pretrained(model_id)
|
16 |
|
17 |
-
def __call__(self, data: Dict[str, Any])
|
18 |
parameters = data.pop("inputs",data)
|
19 |
inputs = data.pop("inputs", data)
|
20 |
if parameters is not None:
|
@@ -24,22 +24,4 @@ class EndpointHandler():
|
|
24 |
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
25 |
return output
|
26 |
|
27 |
-
|
28 |
-
prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
|
29 |
-
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
30 |
-
|
31 |
-
model = LlavaForConditionalGeneration.from_pretrained(
|
32 |
-
model_id,
|
33 |
-
torch_dtype=torch.float16,
|
34 |
-
low_cpu_mem_usage=True,
|
35 |
-
).to(0)
|
36 |
-
|
37 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
38 |
-
|
39 |
-
|
40 |
-
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
41 |
-
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
42 |
-
|
43 |
-
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
44 |
-
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
45 |
-
|
|
|
14 |
).to(0)
|
15 |
processor = AutoProcessor.from_pretrained(model_id)
|
16 |
|
17 |
+
def __call__(self, data: Dict[str, Any]):
|
18 |
parameters = data.pop("inputs",data)
|
19 |
inputs = data.pop("inputs", data)
|
20 |
if parameters is not None:
|
|
|
24 |
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
25 |
return output
|
26 |
|
27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|