Update handler.py
Browse files- handler.py +10 -9
handler.py
CHANGED
@@ -3,7 +3,8 @@ from PIL import Image
|
|
3 |
import requests
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
|
7 |
|
8 |
class EndpointHandler():
|
9 |
def __init__(self, path=""):
|
@@ -12,16 +13,16 @@ class EndpointHandler():
|
|
12 |
model_id,
|
13 |
torch_dtype=torch.float16,
|
14 |
low_cpu_mem_usage=True,
|
|
|
15 |
).to(0)
|
16 |
self.processor = AutoProcessor.from_pretrained(model_id)
|
17 |
|
18 |
def __call__(self, data: Dict[str, Any]):
|
19 |
parameters = data.pop("inputs", data)
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
return readable
|
|
|
3 |
import requests
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig
|
7 |
+
|
8 |
|
9 |
class EndpointHandler():
|
10 |
def __init__(self, path=""):
|
|
|
13 |
model_id,
|
14 |
torch_dtype=torch.float16,
|
15 |
low_cpu_mem_usage=True,
|
16 |
+
load_in_4bit=True
|
17 |
).to(0)
|
18 |
self.processor = AutoProcessor.from_pretrained(model_id)
|
19 |
|
20 |
def __call__(self, data: Dict[str, Any]):
|
21 |
parameters = data.pop("inputs", data)
|
22 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
23 |
+
prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
|
24 |
+
raw_image = Image.open(requests.get(url, stream=True).raw)
|
25 |
+
inputs = self.processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
26 |
+
output = self.model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
27 |
+
print(self.processor.decode(output[0][2:], skip_special_tokens=True))
|
28 |
+
return output
|
|