|
from typing import Dict, Any |
|
from PIL import Image |
|
import requests |
|
import torch |
|
import numpy as np |
|
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
model_id = path |
|
self.model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
load_in_4bit=True |
|
) |
|
self.processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
def __call__(self, data: Dict[list, Any]): |
|
parameters = data.pop("inputs", data) |
|
givenprompt = data.pop("prompt", data) |
|
outputs = [] |
|
print(parameters) |
|
prompt = f"USER: <image>\n{givenprompt}?\nASSISTANT:" |
|
for link in parameters: |
|
try: |
|
|
|
response = requests.get(link, stream=True) |
|
response.raise_for_status() |
|
raw_image = Image.open(response.raw) |
|
|
|
inputs = self.processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16) |
|
output = self.model.generate(**inputs, max_new_tokens=200, do_sample=False) |
|
readable = self.processor.decode(output[0][2:], skip_special_tokens=True) |
|
outputs.append(readable) |
|
except Exception as e: |
|
|
|
outputs.append(f"Error processing image from {link}: {str(e)}") |
|
|
|
return outputs |
|
|