File size: 3,816 Bytes
7230933 741cec3 7230933 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
library_name: transformers
license: mit
base_model: vinai/phobert-large
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: pholarge
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pholarge
This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2752
- F1: 0.9361
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3094 | 1.0 | 1033 | 0.2295 | 0.9327 |
| 0.2346 | 2.0 | 2066 | 0.2651 | 0.9280 |
| 0.2359 | 3.0 | 3099 | 0.2357 | 0.9338 |
| 0.1734 | 4.0 | 4132 | 0.2720 | 0.9277 |
| 0.1551 | 5.0 | 5165 | 0.2940 | 0.9350 |
| 0.1282 | 6.0 | 6198 | 0.2752 | 0.9361 |
| 0.1208 | 7.0 | 7231 | 0.3137 | 0.9347 |
| 0.1074 | 8.0 | 8264 | 0.2967 | 0.9355 |
| 0.2719 | 9.0 | 9297 | 0.8269 | 0.6410 |
| 0.8456 | 10.0 | 10330 | 0.8220 | 0.6410 |
| 0.84 | 11.0 | 11363 | 0.8212 | 0.6410 |
| 0.841 | 12.0 | 12396 | 0.8207 | 0.6410 |
| 0.8383 | 13.0 | 13429 | 0.8198 | 0.6410 |
| 0.8371 | 14.0 | 14462 | 0.8276 | 0.6410 |
| 0.8486 | 15.0 | 15495 | 0.8244 | 0.6410 |
| 0.844 | 16.0 | 16528 | 0.8391 | 0.6410 |
| 0.837 | 17.0 | 17561 | 0.8235 | 0.6410 |
| 0.8438 | 18.0 | 18594 | 0.8247 | 0.6410 |
| 0.8418 | 19.0 | 19627 | 0.8237 | 0.6410 |
| 0.8384 | 20.0 | 20660 | 0.8199 | 0.6410 |
| 0.8387 | 21.0 | 21693 | 0.8226 | 0.6410 |
| 0.8478 | 22.0 | 22726 | 0.8205 | 0.6410 |
| 0.8364 | 23.0 | 23759 | 0.8259 | 0.6410 |
| 0.8325 | 24.0 | 24792 | 0.8245 | 0.6410 |
| 0.8289 | 25.0 | 25825 | 0.8248 | 0.6410 |
| 0.8251 | 26.0 | 26858 | 0.8247 | 0.6410 |
| 0.824 | 27.0 | 27891 | 0.8214 | 0.6410 |
| 0.8197 | 28.0 | 28924 | 0.8282 | 0.6410 |
| 0.8241 | 29.0 | 29957 | 0.8340 | 0.6410 |
| 0.8285 | 30.0 | 30990 | 0.8360 | 0.6410 |
| 0.8169 | 31.0 | 32023 | 0.8401 | 0.6410 |
| 0.811 | 32.0 | 33056 | 0.8534 | 0.6410 |
| 0.8056 | 33.0 | 34089 | 0.8690 | 0.6410 |
| 0.8023 | 34.0 | 35122 | 0.8640 | 0.6410 |
| 0.8146 | 35.0 | 36155 | 0.8704 | 0.6410 |
| 0.8079 | 36.0 | 37188 | 0.8959 | 0.6410 |
| 0.8081 | 37.0 | 38221 | 0.8802 | 0.6410 |
| 0.8059 | 38.0 | 39254 | 0.8901 | 0.6410 |
| 0.8045 | 39.0 | 40287 | 0.8882 | 0.6410 |
| 0.8024 | 40.0 | 41320 | 0.8918 | 0.6410 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
|