File size: 12,573 Bytes
72ba50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
license: mit
base_model: vinai/phobert-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ner

This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7865
- Precision: 0.6846
- Recall: 0.7180
- F1: 0.7009
- Accuracy: 0.8312

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 120.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 487   | 0.6517          | 0.5180    | 0.6267 | 0.5672 | 0.7979   |
| 1.0091        | 2.0   | 974   | 0.6198          | 0.5438    | 0.6583 | 0.5956 | 0.8116   |
| 0.5042        | 3.0   | 1461  | 0.6614          | 0.5677    | 0.6745 | 0.6165 | 0.8094   |
| 0.3543        | 4.0   | 1948  | 0.6794          | 0.5792    | 0.6826 | 0.6267 | 0.8231   |
| 0.2476        | 5.0   | 2435  | 0.7132          | 0.6090    | 0.7041 | 0.6531 | 0.8249   |
| 0.1849        | 6.0   | 2922  | 0.7761          | 0.6023    | 0.6926 | 0.6443 | 0.8219   |
| 0.1465        | 7.0   | 3409  | 0.8294          | 0.5965    | 0.7007 | 0.6444 | 0.8173   |
| 0.1176        | 8.0   | 3896  | 0.8653          | 0.6150    | 0.6935 | 0.6519 | 0.8230   |
| 0.1023        | 9.0   | 4383  | 0.8614          | 0.6123    | 0.6926 | 0.6500 | 0.8226   |
| 0.0823        | 10.0  | 4870  | 0.9825          | 0.6073    | 0.6848 | 0.6437 | 0.8216   |
| 0.069         | 11.0  | 5357  | 0.9783          | 0.6246    | 0.6957 | 0.6582 | 0.8248   |
| 0.0578        | 12.0  | 5844  | 1.0037          | 0.6115    | 0.7030 | 0.6540 | 0.8224   |
| 0.0522        | 13.0  | 6331  | 1.0799          | 0.6177    | 0.6829 | 0.6486 | 0.8161   |
| 0.0461        | 14.0  | 6818  | 1.0693          | 0.6088    | 0.7016 | 0.6519 | 0.8203   |
| 0.0402        | 15.0  | 7305  | 1.0560          | 0.6158    | 0.6991 | 0.6548 | 0.8230   |
| 0.0369        | 16.0  | 7792  | 1.1046          | 0.6307    | 0.6910 | 0.6595 | 0.8197   |
| 0.0391        | 17.0  | 8279  | 1.1480          | 0.6228    | 0.6873 | 0.6535 | 0.8233   |
| 0.0537        | 18.0  | 8766  | 1.2141          | 0.6234    | 0.6873 | 0.6538 | 0.8204   |
| 0.0497        | 19.0  | 9253  | 1.2230          | 0.6241    | 0.6957 | 0.6580 | 0.8189   |
| 0.0512        | 20.0  | 9740  | 1.2078          | 0.6357    | 0.7016 | 0.6670 | 0.8268   |
| 0.0508        | 21.0  | 10227 | 1.1941          | 0.6153    | 0.6921 | 0.6514 | 0.8178   |
| 0.044         | 22.0  | 10714 | 1.3114          | 0.6377    | 0.6924 | 0.6639 | 0.8161   |
| 0.041         | 23.0  | 11201 | 1.2640          | 0.6191    | 0.6884 | 0.6519 | 0.8165   |
| 0.0216        | 24.0  | 11688 | 1.3127          | 0.6349    | 0.6929 | 0.6627 | 0.8240   |
| 0.0187        | 25.0  | 12175 | 1.3329          | 0.6452    | 0.7004 | 0.6717 | 0.8229   |
| 0.0158        | 26.0  | 12662 | 1.2958          | 0.6243    | 0.7004 | 0.6602 | 0.8177   |
| 0.0151        | 27.0  | 13149 | 1.3276          | 0.6204    | 0.6985 | 0.6571 | 0.8181   |
| 0.016         | 28.0  | 13636 | 1.2671          | 0.6481    | 0.6999 | 0.6730 | 0.8251   |
| 0.0157        | 29.0  | 14123 | 1.3374          | 0.6191    | 0.6946 | 0.6547 | 0.8204   |
| 0.0146        | 30.0  | 14610 | 1.3941          | 0.6558    | 0.6932 | 0.6740 | 0.8192   |
| 0.0134        | 31.0  | 15097 | 1.4215          | 0.6344    | 0.6854 | 0.6589 | 0.8164   |
| 0.0146        | 32.0  | 15584 | 1.4602          | 0.6510    | 0.6937 | 0.6717 | 0.8198   |
| 0.0105        | 33.0  | 16071 | 1.4085          | 0.6459    | 0.7038 | 0.6736 | 0.8240   |
| 0.0135        | 34.0  | 16558 | 1.3593          | 0.6337    | 0.7002 | 0.6653 | 0.8166   |
| 0.0155        | 35.0  | 17045 | 1.3412          | 0.6519    | 0.6943 | 0.6724 | 0.8222   |
| 0.0141        | 36.0  | 17532 | 1.3676          | 0.6385    | 0.7021 | 0.6688 | 0.8219   |
| 0.0145        | 37.0  | 18019 | 1.3878          | 0.6573    | 0.6993 | 0.6777 | 0.8251   |
| 0.0106        | 38.0  | 18506 | 1.4314          | 0.6298    | 0.7016 | 0.6638 | 0.8239   |
| 0.0106        | 39.0  | 18993 | 1.3729          | 0.6666    | 0.7071 | 0.6863 | 0.8282   |
| 0.0112        | 40.0  | 19480 | 1.3455          | 0.6506    | 0.7032 | 0.6759 | 0.8283   |
| 0.0109        | 41.0  | 19967 | 1.3884          | 0.6429    | 0.7060 | 0.6730 | 0.8278   |
| 0.0084        | 42.0  | 20454 | 1.4240          | 0.6428    | 0.7080 | 0.6738 | 0.8255   |
| 0.0082        | 43.0  | 20941 | 1.4280          | 0.6091    | 0.6829 | 0.6439 | 0.8176   |
| 0.0122        | 44.0  | 21428 | 1.4723          | 0.6533    | 0.7032 | 0.6773 | 0.8239   |
| 0.0082        | 45.0  | 21915 | 1.5151          | 0.6189    | 0.6960 | 0.6552 | 0.8180   |
| 0.0068        | 46.0  | 22402 | 1.4441          | 0.6331    | 0.7046 | 0.6669 | 0.8211   |
| 0.0074        | 47.0  | 22889 | 1.4753          | 0.6497    | 0.6974 | 0.6727 | 0.8203   |
| 0.0076        | 48.0  | 23376 | 1.5148          | 0.6515    | 0.6957 | 0.6729 | 0.8215   |
| 0.0098        | 49.0  | 23863 | 1.4481          | 0.6319    | 0.6974 | 0.6630 | 0.8233   |
| 0.0104        | 50.0  | 24350 | 1.4814          | 0.6585    | 0.7074 | 0.6821 | 0.8235   |
| 0.0119        | 51.0  | 24837 | 1.4050          | 0.6555    | 0.7133 | 0.6832 | 0.8264   |
| 0.0078        | 52.0  | 25324 | 1.4854          | 0.6615    | 0.7049 | 0.6825 | 0.8234   |
| 0.007         | 53.0  | 25811 | 1.4941          | 0.6476    | 0.7013 | 0.6734 | 0.8204   |
| 0.0079        | 54.0  | 26298 | 1.4138          | 0.6529    | 0.7088 | 0.6797 | 0.8228   |
| 0.0092        | 55.0  | 26785 | 1.4301          | 0.6762    | 0.7018 | 0.6888 | 0.8218   |
| 0.0097        | 56.0  | 27272 | 1.5276          | 0.6544    | 0.6974 | 0.6752 | 0.8182   |
| 0.0076        | 57.0  | 27759 | 1.4302          | 0.6517    | 0.7032 | 0.6765 | 0.8258   |
| 0.0056        | 58.0  | 28246 | 1.4996          | 0.6675    | 0.7046 | 0.6856 | 0.8265   |
| 0.0047        | 59.0  | 28733 | 1.4309          | 0.6625    | 0.7032 | 0.6823 | 0.8241   |
| 0.0126        | 60.0  | 29220 | 1.4903          | 0.6457    | 0.7002 | 0.6718 | 0.8172   |
| 0.0054        | 61.0  | 29707 | 1.4318          | 0.6398    | 0.7035 | 0.6701 | 0.8218   |
| 0.0076        | 62.0  | 30194 | 1.5745          | 0.6660    | 0.6988 | 0.6820 | 0.8196   |
| 0.0043        | 63.0  | 30681 | 1.5102          | 0.6607    | 0.7058 | 0.6825 | 0.8268   |
| 0.0046        | 64.0  | 31168 | 1.5500          | 0.6655    | 0.6949 | 0.6799 | 0.8252   |
| 0.0042        | 65.0  | 31655 | 1.5357          | 0.6555    | 0.7138 | 0.6834 | 0.8274   |
| 0.0039        | 66.0  | 32142 | 1.5469          | 0.6650    | 0.7105 | 0.6870 | 0.8220   |
| 0.004         | 67.0  | 32629 | 1.4814          | 0.6542    | 0.7147 | 0.6831 | 0.8289   |
| 0.0031        | 68.0  | 33116 | 1.5210          | 0.6545    | 0.7097 | 0.6810 | 0.8250   |
| 0.0047        | 69.0  | 33603 | 1.5326          | 0.6549    | 0.7083 | 0.6805 | 0.8272   |
| 0.0029        | 70.0  | 34090 | 1.6057          | 0.6643    | 0.7027 | 0.6829 | 0.8226   |
| 0.0027        | 71.0  | 34577 | 1.5920          | 0.6594    | 0.7141 | 0.6857 | 0.8255   |
| 0.0016        | 72.0  | 35064 | 1.6220          | 0.6668    | 0.7024 | 0.6842 | 0.8255   |
| 0.0025        | 73.0  | 35551 | 1.6261          | 0.6803    | 0.7027 | 0.6913 | 0.8239   |
| 0.0037        | 74.0  | 36038 | 1.6440          | 0.6769    | 0.7049 | 0.6906 | 0.8207   |
| 0.003         | 75.0  | 36525 | 1.6027          | 0.6701    | 0.7071 | 0.6881 | 0.8263   |
| 0.0031        | 76.0  | 37012 | 1.6013          | 0.6670    | 0.7141 | 0.6898 | 0.8262   |
| 0.0031        | 77.0  | 37499 | 1.6714          | 0.6434    | 0.7147 | 0.6772 | 0.8185   |
| 0.002         | 78.0  | 37986 | 1.6293          | 0.6666    | 0.7071 | 0.6863 | 0.8267   |
| 0.0024        | 79.0  | 38473 | 1.6796          | 0.6578    | 0.7094 | 0.6826 | 0.8222   |
| 0.003         | 80.0  | 38960 | 1.6463          | 0.6701    | 0.7094 | 0.6892 | 0.8283   |
| 0.0015        | 81.0  | 39447 | 1.6634          | 0.6765    | 0.7074 | 0.6916 | 0.8266   |
| 0.003         | 82.0  | 39934 | 1.6947          | 0.6636    | 0.7055 | 0.6839 | 0.8255   |
| 0.0036        | 83.0  | 40421 | 1.6515          | 0.6554    | 0.7046 | 0.6791 | 0.8227   |
| 0.0018        | 84.0  | 40908 | 1.6855          | 0.6641    | 0.7102 | 0.6864 | 0.8266   |
| 0.0012        | 85.0  | 41395 | 1.6966          | 0.6545    | 0.7108 | 0.6815 | 0.8241   |
| 0.0019        | 86.0  | 41882 | 1.6564          | 0.6623    | 0.7058 | 0.6833 | 0.8255   |
| 0.0015        | 87.0  | 42369 | 1.6363          | 0.6501    | 0.7080 | 0.6778 | 0.8239   |
| 0.0022        | 88.0  | 42856 | 1.6879          | 0.6813    | 0.7055 | 0.6932 | 0.8260   |
| 0.0011        | 89.0  | 43343 | 1.6870          | 0.6660    | 0.7113 | 0.6879 | 0.8294   |
| 0.0017        | 90.0  | 43830 | 1.7018          | 0.6707    | 0.7041 | 0.6870 | 0.8276   |
| 0.0016        | 91.0  | 44317 | 1.6699          | 0.6701    | 0.7133 | 0.6910 | 0.8281   |
| 0.0015        | 92.0  | 44804 | 1.6737          | 0.6773    | 0.7125 | 0.6944 | 0.8320   |
| 0.0017        | 93.0  | 45291 | 1.7271          | 0.6769    | 0.7189 | 0.6973 | 0.8280   |
| 0.0005        | 94.0  | 45778 | 1.7245          | 0.6654    | 0.7127 | 0.6882 | 0.8261   |
| 0.0013        | 95.0  | 46265 | 1.8143          | 0.6772    | 0.7052 | 0.6909 | 0.8235   |
| 0.0012        | 96.0  | 46752 | 1.7299          | 0.6736    | 0.7091 | 0.6909 | 0.8262   |
| 0.002         | 97.0  | 47239 | 1.7251          | 0.6758    | 0.7125 | 0.6937 | 0.8273   |
| 0.0009        | 98.0  | 47726 | 1.7183          | 0.6565    | 0.7183 | 0.6860 | 0.8262   |
| 0.0009        | 99.0  | 48213 | 1.7801          | 0.6759    | 0.7116 | 0.6933 | 0.8279   |
| 0.0008        | 100.0 | 48700 | 1.7749          | 0.6817    | 0.7108 | 0.6959 | 0.8263   |
| 0.0006        | 101.0 | 49187 | 1.7413          | 0.6732    | 0.7113 | 0.6917 | 0.8272   |
| 0.0005        | 102.0 | 49674 | 1.7939          | 0.6648    | 0.7144 | 0.6887 | 0.8270   |
| 0.0008        | 103.0 | 50161 | 1.7955          | 0.6602    | 0.7111 | 0.6847 | 0.8237   |
| 0.0007        | 104.0 | 50648 | 1.7844          | 0.6686    | 0.7130 | 0.6901 | 0.8266   |
| 0.0005        | 105.0 | 51135 | 1.7983          | 0.6808    | 0.7127 | 0.6964 | 0.8279   |
| 0.0004        | 106.0 | 51622 | 1.7945          | 0.6798    | 0.7130 | 0.6960 | 0.8256   |
| 0.0005        | 107.0 | 52109 | 1.8209          | 0.6879    | 0.7164 | 0.7019 | 0.8297   |
| 0.0004        | 108.0 | 52596 | 1.8150          | 0.6839    | 0.7085 | 0.6960 | 0.8281   |
| 0.0006        | 109.0 | 53083 | 1.7784          | 0.6778    | 0.7166 | 0.6967 | 0.8287   |
| 0.0009        | 110.0 | 53570 | 1.7941          | 0.6761    | 0.7180 | 0.6965 | 0.8293   |
| 0.0006        | 111.0 | 54057 | 1.8079          | 0.6762    | 0.7200 | 0.6974 | 0.8280   |
| 0.0006        | 112.0 | 54544 | 1.7968          | 0.6752    | 0.7166 | 0.6953 | 0.8277   |
| 0.0003        | 113.0 | 55031 | 1.7972          | 0.6753    | 0.7166 | 0.6954 | 0.8285   |
| 0.0003        | 114.0 | 55518 | 1.7985          | 0.6764    | 0.7172 | 0.6962 | 0.8298   |
| 0.0006        | 115.0 | 56005 | 1.8048          | 0.6759    | 0.7172 | 0.6959 | 0.8287   |
| 0.0006        | 116.0 | 56492 | 1.7985          | 0.6758    | 0.7152 | 0.6950 | 0.8298   |
| 0.0004        | 117.0 | 56979 | 1.7883          | 0.6835    | 0.7164 | 0.6996 | 0.8314   |
| 0.0009        | 118.0 | 57466 | 1.7852          | 0.6830    | 0.7180 | 0.7001 | 0.8311   |
| 0.0002        | 119.0 | 57953 | 1.7869          | 0.6853    | 0.7180 | 0.7013 | 0.8309   |
| 0.0003        | 120.0 | 58440 | 1.7865          | 0.6846    | 0.7180 | 0.7009 | 0.8312   |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 3.1.0
- Tokenizers 0.13.3