File size: 6,103 Bytes
748411e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
license: mit
datasets:
- hrishivish23/MPM-Verse-MaterialSim-Small
- hrishivish23/MPM-Verse-MaterialSim-Large
language:
- en
metrics:
- accuracy
pipeline_tag: graph-ml
tags:
- physics
- scientific-ml
- lagrangian-dynamics
- neural-operator
- neural-operator-transformer
- graph-neural-networks
- graph-transformer
- sequence-to-sequence
- autoregressive
- temporal-dynamics
---
# π PhysicsEngine: Reduced-Order Neural Operators for Lagrangian Dynamics
**By [Hrishikesh Viswanath](https://huggingface.co/hrishivish23), Yue Chang, Julius Berner, Peter Yichen Chen, Aniket Bera**

---
## π Model Overview
**GIOROM** is a **Reduced-Order Neural Operator Transformer** designed for **Lagrangian dynamics simulations on highly sparse graphs**. The model enables hybrid **Eulerian-Lagrangian learning** by:
- **Projecting Lagrangian inputs onto uniform grids** with a **Graph-Interaction-Operator**.
- **Predicting acceleration from sparse velocity inputs** using past time windows with a **Neural Operator Transformer**.
- **Learning physics from sparse inputs (n βͺ N)** while allowing reconstruction at arbitrarily dense resolutions via an **Integral Transform Model**.
- **Dataset Compatibility**: This model is compatible with [`MPM-Verse-MaterialSim-Small/Elasticity3DSmall`](https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Small/tree/main/Elasticity3DSmall),
β **Note:** While the model can infer using an integral transform, **this repository only provides weights for the time-stepper model that predicts acceleration.**
---
## π Available Model Variants
Each variant corresponds to a specific dataset, showcasing the reduction in particle count (n: reduced-order, N: full-order).
| Model Name | n (Reduced) | N (Full) |
|---------------------------------|------------|---------|
| `giorom-3d-t-sand3d-long` | 3.0K | 32K |
| `giorom-3d-t-water3d` | 1.7K | 55K |
| `giorom-3d-t-elasticity` | 2.6K | 78K |
| `giorom-3d-t-plasticine` | 1.1K | 5K |
| `giorom-2d-t-water` | 0.12K | 1K |
| `giorom-2d-t-sand` | 0.3K | 2K |
| `giorom-2d-t-jelly` | 0.2K | 1.9K |
| `giorom-2d-t-multimaterial` | 0.25K | 2K |
---
## π‘ How It Works
### πΉ Input Representation
The model predicts **acceleration** from past velocity inputs:
- **Input Shape:** `[n, D, W]`
- `n`: Number of particles (reduced-order, n βͺ N)
- `D`: Dimension (2D or 3D)
- `W`: Time window (past velocity states)
- **Projected to a uniform latent space** of size `[c^D, D]` where:
- `c β {8, 16, 32}`
- `n - Ξ΄n β€ c^D β€ n + Ξ΄n`
This allows the model to generalize physics across different resolutions and discretizations.
### πΉ Prediction & Reconstruction
- The model **learns physical dynamics** on the sparse input representation.
- The **integral transform model** reconstructs dense outputs at arbitrary resolutions (not included in this repo).
- Enables **highly efficient, scalable simulations** without requiring full-resolution training.
---
## π Usage Guide
### 1οΈβ£ Install Dependencies
```bash
pip install transformers huggingface_hub torch
```
```
git clone https://github.com/HrishikeshVish/GIOROM/
cd GIOROM
```
### 2οΈβ£ Load a Model
```python
from models.giorom3d_T import PhysicsEngine
from models.config import TimeStepperConfig
time_stepper_config = TimeStepperConfig()
simulator = PhysicsEngine(time_stepper_config)
repo_id = "hrishivish23/giorom-3d-t-sand3d"
time_stepper_config = time_stepper_config.from_pretrained(repo_id)
simulator = simulator.from_pretrained(repo_id, config=time_stepper_config)
```
### 3οΈβ£ Run Inference
```python
import torch
```
---
## π Model Weights and Checkpoints
| Model Name | Model ID |
|---------------------------------|-------------|
| `giorom-3d-t-sand3d-long` | [`hrishivish23/giorom-3d-t-sand3d-long`](https://huggingface.co/hrishivish23/giorom-3d-t-sand3d-long) |
| `giorom-3d-t-water3d` | [`hrishivish23/giorom-3d-t-water3d`](https://huggingface.co/hrishivish23/giorom-3d-t-water3d) |
---
## π Training Details
### π§ Hyperparameters
- **Graph Interaction Operator** layers: **4**
- **Transformer Heads**: **4**
- **Embedding Dimension:** **128**
- **Latent Grid Sizes:** `{8Γ8, 16Γ16, 32Γ32}`
- **Learning Rate:** `1e-4`
- **Optimizer:** `Adamax`
- **Loss Function:** `MSE + Physics Regularization (Loss computed on Euler integrated outputs)`
- **Training Steps:** `1M+ steps`
### π₯οΈ Hardware
- **Trained on:** NVIDIA RTX 3050
- **Batch Size:** `2`
---
## π Citation
If you use this model, please cite:
```bibtex
@article{viswanath2024reduced,
title={Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs},
author={Viswanath, Hrishikesh and Chang, Yue and Berner, Julius and Chen, Peter Yichen and Bera, Aniket},
journal={arXiv preprint arXiv:2407.03925},
year={2024}
}
```
---
## π¬ Contact
For questions or collaborations:
- π§βπ» Author: [Hrishikesh Viswanath](https://hrishikeshvish.github.io)
- π§ Email: [email protected]
- π¬ Hugging Face Discussion: [Model Page](https://huggingface.co/hrishivish23/giorom-3d-t-sand3d-long/discussions)
---
## π Related Work
- **Neural Operators for PDEs**: Fourier Neural Operators, Graph Neural Operators
- **Lagrangian Methods**: Material Point Methods, SPH, NCLAW, CROM, LiCROM
- **Physics-Based ML**: PINNs, GNS, MeshGraphNet
---
### πΉ Summary
This model is ideal for **fast and scalable physics simulations** where full-resolution computation is infeasible. The reduced-order approach allows **efficient learning on sparse inputs**, with the ability to **reconstruct dense outputs using an integral transform model (not included in this repo).** |