Update README.md
Browse files
README.md
CHANGED
@@ -33,149 +33,77 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
33 |
|
34 |
## Uses
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
[More Information Needed]
|
112 |
-
|
113 |
-
#### Metrics
|
114 |
-
|
115 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
### Results
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Summary
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
## Model Examination [optional]
|
128 |
-
|
129 |
-
<!-- Relevant interpretability work for the model goes here -->
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
## Environmental Impact
|
134 |
-
|
135 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
136 |
-
|
137 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
138 |
-
|
139 |
-
- **Hardware Type:** [More Information Needed]
|
140 |
-
- **Hours used:** [More Information Needed]
|
141 |
-
- **Cloud Provider:** [More Information Needed]
|
142 |
-
- **Compute Region:** [More Information Needed]
|
143 |
-
- **Carbon Emitted:** [More Information Needed]
|
144 |
-
|
145 |
-
## Technical Specifications [optional]
|
146 |
-
|
147 |
-
### Model Architecture and Objective
|
148 |
-
|
149 |
-
[More Information Needed]
|
150 |
-
|
151 |
-
### Compute Infrastructure
|
152 |
-
|
153 |
-
[More Information Needed]
|
154 |
-
|
155 |
-
#### Hardware
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
#### Software
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
**BibTeX:**
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
**APA:**
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## More Information [optional]
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Model Card Authors [optional]
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
## Model Card Contact
|
180 |
-
|
181 |
-
[More Information Needed]
|
|
|
33 |
|
34 |
## Uses
|
35 |
|
36 |
+
Example prompt and response:
|
37 |
+
|
38 |
+
```
|
39 |
+
INPUT PROMPT:
|
40 |
+
Tables:
|
41 |
+
CREATE TABLE employees (
|
42 |
+
EMPLOYEE_ID decimal(6,0),
|
43 |
+
FIRST_NAME varchar(20),
|
44 |
+
LAST_NAME varchar(25),
|
45 |
+
EMAIL varchar(25),
|
46 |
+
PHONE_NUMBER varchar(20),
|
47 |
+
HIRE_DATE date,
|
48 |
+
JOB_ID varchar(10),
|
49 |
+
SALARY decimal(8,2),
|
50 |
+
COMMISSION_PCT decimal(2,2),
|
51 |
+
MANAGER_ID decimal(6,0),
|
52 |
+
DEPARTMENT_ID decimal(4,0)
|
53 |
+
)
|
54 |
+
|
55 |
+
CREATE TABLE jobs (
|
56 |
+
JOB_ID varchar(10),
|
57 |
+
JOB_TITLE varchar(35),
|
58 |
+
MIN_SALARY decimal(6,0),
|
59 |
+
MAX_SALARY decimal(6,0)
|
60 |
+
)
|
61 |
+
|
62 |
+
CREATE TABLE locations (
|
63 |
+
LOCATION_ID decimal(4,0),
|
64 |
+
STREET_ADDRESS varchar(40),
|
65 |
+
POSTAL_CODE varchar(12),
|
66 |
+
CITY varchar(30),
|
67 |
+
STATE_PROVINCE varchar(25),
|
68 |
+
COUNTRY_ID varchar(2)
|
69 |
+
)
|
70 |
+
|
71 |
+
CREATE TABLE countries (
|
72 |
+
COUNTRY_ID varchar(2),
|
73 |
+
COUNTRY_NAME varchar(40),
|
74 |
+
REGION_ID decimal(10,0)
|
75 |
+
)
|
76 |
+
|
77 |
+
CREATE TABLE job_history (
|
78 |
+
EMPLOYEE_ID decimal(6,0),
|
79 |
+
START_DATE date,
|
80 |
+
END_DATE date,
|
81 |
+
JOB_ID varchar(10),
|
82 |
+
DEPARTMENT_ID decimal(4,0)
|
83 |
+
)
|
84 |
+
|
85 |
+
CREATE TABLE regions (
|
86 |
+
REGION_ID decimal(5,0),
|
87 |
+
REGION_NAME varchar(25)
|
88 |
+
)
|
89 |
+
|
90 |
+
CREATE TABLE departments (
|
91 |
+
DEPARTMENT_ID decimal(4,0),
|
92 |
+
DEPARTMENT_NAME varchar(30),
|
93 |
+
MANAGER_ID decimal(6,0),
|
94 |
+
LOCATION_ID decimal(4,0)
|
95 |
+
)
|
96 |
+
|
97 |
+
Question:
|
98 |
+
For those employees who did not have any job in the past, give me the comparison about the amount of job_id over the job_id , and group by attribute job_id, and list from low to high by the JOB_ID please.
|
99 |
+
|
100 |
+
Answer:
|
101 |
+
|
102 |
+
---------------------------------------------------------------------------------------------------
|
103 |
+
BASELINE ANSWER:
|
104 |
+
SELECT JOB_ID, COUNT(JOB_ID) FROM employees WHERE NOT EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM job_history) GROUP BY JOB_ID ORDER BY JOB_ID
|
105 |
+
|
106 |
+
---------------------------------------------------------------------------------------------------
|
107 |
+
MODEL RESPONSE:
|
108 |
+
SELECT JOB_ID, COUNT(JOB_ID) FROM employees WHERE NOT EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM job_history) ORDER BY JOB_ID DESC
|
109 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|