howkewlisthat commited on
Commit
dbc5957
·
verified ·
1 Parent(s): beb584b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -146
README.md CHANGED
@@ -33,149 +33,77 @@ This is the model card of a 🤗 transformers model that has been pushed on the
33
 
34
  ## Uses
35
 
36
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
-
38
- ### Direct Use
39
-
40
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
41
-
42
- [More Information Needed]
43
-
44
- ### Out-of-Scope Use
45
-
46
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
47
-
48
- [More Information Needed]
49
-
50
- ## Bias, Risks, and Limitations
51
-
52
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
53
-
54
- [More Information Needed]
55
-
56
- ### Recommendations
57
-
58
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
59
-
60
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
61
-
62
- ## How to Get Started with the Model
63
-
64
- Use the code below to get started with the model.
65
-
66
- [More Information Needed]
67
-
68
- ## Training Details
69
-
70
- ### Training Data
71
-
72
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
73
-
74
- [More Information Needed]
75
-
76
- ### Training Procedure
77
-
78
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
79
-
80
- #### Preprocessing [optional]
81
-
82
- [More Information Needed]
83
-
84
-
85
- #### Training Hyperparameters
86
-
87
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
88
-
89
- #### Speeds, Sizes, Times [optional]
90
-
91
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
92
-
93
- [More Information Needed]
94
-
95
- ## Evaluation
96
-
97
- <!-- This section describes the evaluation protocols and provides the results. -->
98
-
99
- ### Testing Data, Factors & Metrics
100
-
101
- #### Testing Data
102
-
103
- <!-- This should link to a Dataset Card if possible. -->
104
-
105
- [More Information Needed]
106
-
107
- #### Factors
108
-
109
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
110
-
111
- [More Information Needed]
112
-
113
- #### Metrics
114
-
115
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
116
-
117
- [More Information Needed]
118
-
119
- ### Results
120
-
121
- [More Information Needed]
122
-
123
- #### Summary
124
-
125
-
126
-
127
- ## Model Examination [optional]
128
-
129
- <!-- Relevant interpretability work for the model goes here -->
130
-
131
- [More Information Needed]
132
-
133
- ## Environmental Impact
134
-
135
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
136
-
137
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
138
-
139
- - **Hardware Type:** [More Information Needed]
140
- - **Hours used:** [More Information Needed]
141
- - **Cloud Provider:** [More Information Needed]
142
- - **Compute Region:** [More Information Needed]
143
- - **Carbon Emitted:** [More Information Needed]
144
-
145
- ## Technical Specifications [optional]
146
-
147
- ### Model Architecture and Objective
148
-
149
- [More Information Needed]
150
-
151
- ### Compute Infrastructure
152
-
153
- [More Information Needed]
154
-
155
- #### Hardware
156
-
157
- [More Information Needed]
158
-
159
- #### Software
160
-
161
- [More Information Needed]
162
-
163
- **BibTeX:**
164
-
165
- [More Information Needed]
166
-
167
- **APA:**
168
-
169
- [More Information Needed]
170
-
171
- ## More Information [optional]
172
-
173
- [More Information Needed]
174
-
175
- ## Model Card Authors [optional]
176
-
177
- [More Information Needed]
178
-
179
- ## Model Card Contact
180
-
181
- [More Information Needed]
 
33
 
34
  ## Uses
35
 
36
+ Example prompt and response:
37
+
38
+ ```
39
+ INPUT PROMPT:
40
+ Tables:
41
+ CREATE TABLE employees (
42
+ EMPLOYEE_ID decimal(6,0),
43
+ FIRST_NAME varchar(20),
44
+ LAST_NAME varchar(25),
45
+ EMAIL varchar(25),
46
+ PHONE_NUMBER varchar(20),
47
+ HIRE_DATE date,
48
+ JOB_ID varchar(10),
49
+ SALARY decimal(8,2),
50
+ COMMISSION_PCT decimal(2,2),
51
+ MANAGER_ID decimal(6,0),
52
+ DEPARTMENT_ID decimal(4,0)
53
+ )
54
+
55
+ CREATE TABLE jobs (
56
+ JOB_ID varchar(10),
57
+ JOB_TITLE varchar(35),
58
+ MIN_SALARY decimal(6,0),
59
+ MAX_SALARY decimal(6,0)
60
+ )
61
+
62
+ CREATE TABLE locations (
63
+ LOCATION_ID decimal(4,0),
64
+ STREET_ADDRESS varchar(40),
65
+ POSTAL_CODE varchar(12),
66
+ CITY varchar(30),
67
+ STATE_PROVINCE varchar(25),
68
+ COUNTRY_ID varchar(2)
69
+ )
70
+
71
+ CREATE TABLE countries (
72
+ COUNTRY_ID varchar(2),
73
+ COUNTRY_NAME varchar(40),
74
+ REGION_ID decimal(10,0)
75
+ )
76
+
77
+ CREATE TABLE job_history (
78
+ EMPLOYEE_ID decimal(6,0),
79
+ START_DATE date,
80
+ END_DATE date,
81
+ JOB_ID varchar(10),
82
+ DEPARTMENT_ID decimal(4,0)
83
+ )
84
+
85
+ CREATE TABLE regions (
86
+ REGION_ID decimal(5,0),
87
+ REGION_NAME varchar(25)
88
+ )
89
+
90
+ CREATE TABLE departments (
91
+ DEPARTMENT_ID decimal(4,0),
92
+ DEPARTMENT_NAME varchar(30),
93
+ MANAGER_ID decimal(6,0),
94
+ LOCATION_ID decimal(4,0)
95
+ )
96
+
97
+ Question:
98
+ For those employees who did not have any job in the past, give me the comparison about the amount of job_id over the job_id , and group by attribute job_id, and list from low to high by the JOB_ID please.
99
+
100
+ Answer:
101
+
102
+ ---------------------------------------------------------------------------------------------------
103
+ BASELINE ANSWER:
104
+ SELECT JOB_ID, COUNT(JOB_ID) FROM employees WHERE NOT EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM job_history) GROUP BY JOB_ID ORDER BY JOB_ID
105
+
106
+ ---------------------------------------------------------------------------------------------------
107
+ MODEL RESPONSE:
108
+ SELECT JOB_ID, COUNT(JOB_ID) FROM employees WHERE NOT EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM job_history) ORDER BY JOB_ID DESC
109
+ ```