Model save
Browse files- README.md +111 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: hongpingjun98/BioMedNLP_DeBERTa
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- sem_eval_2024_task_2
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: BioMedNLP_DeBERTa_all_updates
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Text Classification
|
18 |
+
type: text-classification
|
19 |
+
dataset:
|
20 |
+
name: sem_eval_2024_task_2
|
21 |
+
type: sem_eval_2024_task_2
|
22 |
+
config: sem_eval_2024_task_2_source
|
23 |
+
split: validation
|
24 |
+
args: sem_eval_2024_task_2_source
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.655
|
29 |
+
- name: Precision
|
30 |
+
type: precision
|
31 |
+
value: 0.6714791459232217
|
32 |
+
- name: Recall
|
33 |
+
type: recall
|
34 |
+
value: 0.655
|
35 |
+
- name: F1
|
36 |
+
type: f1
|
37 |
+
value: 0.6465073388150311
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# BioMedNLP_DeBERTa_all_updates
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [hongpingjun98/BioMedNLP_DeBERTa](https://huggingface.co/hongpingjun98/BioMedNLP_DeBERTa) on the sem_eval_2024_task_2 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 2.4673
|
48 |
+
- Accuracy: 0.655
|
49 |
+
- Precision: 0.6715
|
50 |
+
- Recall: 0.655
|
51 |
+
- F1: 0.6465
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 16
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- lr_scheduler_warmup_steps: 500
|
77 |
+
- num_epochs: 20
|
78 |
+
- mixed_precision_training: Native AMP
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 0.3757 | 1.0 | 115 | 0.6988 | 0.7 | 0.7020 | 0.7 | 0.6992 |
|
85 |
+
| 0.3965 | 2.0 | 230 | 0.7320 | 0.695 | 0.7259 | 0.6950 | 0.6842 |
|
86 |
+
| 0.3603 | 3.0 | 345 | 0.7736 | 0.7 | 0.7338 | 0.7 | 0.6888 |
|
87 |
+
| 0.2721 | 4.0 | 460 | 0.8780 | 0.665 | 0.6802 | 0.665 | 0.6578 |
|
88 |
+
| 0.4003 | 5.0 | 575 | 0.9046 | 0.655 | 0.6796 | 0.655 | 0.6428 |
|
89 |
+
| 0.2773 | 6.0 | 690 | 0.9664 | 0.7 | 0.7053 | 0.7 | 0.6981 |
|
90 |
+
| 0.2465 | 7.0 | 805 | 1.0035 | 0.67 | 0.6845 | 0.67 | 0.6634 |
|
91 |
+
| 0.3437 | 8.0 | 920 | 1.0087 | 0.665 | 0.6780 | 0.665 | 0.6588 |
|
92 |
+
| 0.1175 | 9.0 | 1035 | 1.2598 | 0.675 | 0.6780 | 0.675 | 0.6736 |
|
93 |
+
| 0.155 | 10.0 | 1150 | 1.3976 | 0.69 | 0.7038 | 0.69 | 0.6847 |
|
94 |
+
| 0.1013 | 11.0 | 1265 | 1.3761 | 0.67 | 0.6757 | 0.6700 | 0.6673 |
|
95 |
+
| 0.1664 | 12.0 | 1380 | 1.5027 | 0.695 | 0.6950 | 0.695 | 0.6950 |
|
96 |
+
| 0.0847 | 13.0 | 1495 | 1.8199 | 0.685 | 0.6973 | 0.685 | 0.68 |
|
97 |
+
| 0.0856 | 14.0 | 1610 | 1.8299 | 0.66 | 0.6783 | 0.6600 | 0.6511 |
|
98 |
+
| 0.1053 | 15.0 | 1725 | 2.0431 | 0.665 | 0.6852 | 0.665 | 0.6556 |
|
99 |
+
| 0.0958 | 16.0 | 1840 | 1.9203 | 0.7 | 0.7040 | 0.7 | 0.6985 |
|
100 |
+
| 0.0344 | 17.0 | 1955 | 2.1390 | 0.665 | 0.6780 | 0.665 | 0.6588 |
|
101 |
+
| 0.014 | 18.0 | 2070 | 2.3609 | 0.655 | 0.6692 | 0.655 | 0.6476 |
|
102 |
+
| 0.0085 | 19.0 | 2185 | 2.4310 | 0.65 | 0.6671 | 0.65 | 0.6408 |
|
103 |
+
| 0.0285 | 20.0 | 2300 | 2.4673 | 0.655 | 0.6715 | 0.655 | 0.6465 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.35.2
|
109 |
+
- Pytorch 2.1.0+cu121
|
110 |
+
- Datasets 2.16.1
|
111 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 432960488
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7225ae82f90c08bbe7108614f659fb1d02c027d5ce5adf9c2bd0e458a2eec807
|
3 |
size 432960488
|