hongpingjun98 commited on
Commit
e01d5a5
·
verified ·
1 Parent(s): f340a65

Model save

Browse files
Files changed (2) hide show
  1. README.md +111 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: hongpingjun98/BioMedNLP_DeBERTa
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - sem_eval_2024_task_2
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: BioMedNLP_DeBERTa_all_updates
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: sem_eval_2024_task_2
21
+ type: sem_eval_2024_task_2
22
+ config: sem_eval_2024_task_2_source
23
+ split: validation
24
+ args: sem_eval_2024_task_2_source
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.655
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.6714791459232217
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.655
35
+ - name: F1
36
+ type: f1
37
+ value: 0.6465073388150311
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # BioMedNLP_DeBERTa_all_updates
44
+
45
+ This model is a fine-tuned version of [hongpingjun98/BioMedNLP_DeBERTa](https://huggingface.co/hongpingjun98/BioMedNLP_DeBERTa) on the sem_eval_2024_task_2 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 2.4673
48
+ - Accuracy: 0.655
49
+ - Precision: 0.6715
50
+ - Recall: 0.655
51
+ - F1: 0.6465
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - lr_scheduler_warmup_steps: 500
77
+ - num_epochs: 20
78
+ - mixed_precision_training: Native AMP
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 0.3757 | 1.0 | 115 | 0.6988 | 0.7 | 0.7020 | 0.7 | 0.6992 |
85
+ | 0.3965 | 2.0 | 230 | 0.7320 | 0.695 | 0.7259 | 0.6950 | 0.6842 |
86
+ | 0.3603 | 3.0 | 345 | 0.7736 | 0.7 | 0.7338 | 0.7 | 0.6888 |
87
+ | 0.2721 | 4.0 | 460 | 0.8780 | 0.665 | 0.6802 | 0.665 | 0.6578 |
88
+ | 0.4003 | 5.0 | 575 | 0.9046 | 0.655 | 0.6796 | 0.655 | 0.6428 |
89
+ | 0.2773 | 6.0 | 690 | 0.9664 | 0.7 | 0.7053 | 0.7 | 0.6981 |
90
+ | 0.2465 | 7.0 | 805 | 1.0035 | 0.67 | 0.6845 | 0.67 | 0.6634 |
91
+ | 0.3437 | 8.0 | 920 | 1.0087 | 0.665 | 0.6780 | 0.665 | 0.6588 |
92
+ | 0.1175 | 9.0 | 1035 | 1.2598 | 0.675 | 0.6780 | 0.675 | 0.6736 |
93
+ | 0.155 | 10.0 | 1150 | 1.3976 | 0.69 | 0.7038 | 0.69 | 0.6847 |
94
+ | 0.1013 | 11.0 | 1265 | 1.3761 | 0.67 | 0.6757 | 0.6700 | 0.6673 |
95
+ | 0.1664 | 12.0 | 1380 | 1.5027 | 0.695 | 0.6950 | 0.695 | 0.6950 |
96
+ | 0.0847 | 13.0 | 1495 | 1.8199 | 0.685 | 0.6973 | 0.685 | 0.68 |
97
+ | 0.0856 | 14.0 | 1610 | 1.8299 | 0.66 | 0.6783 | 0.6600 | 0.6511 |
98
+ | 0.1053 | 15.0 | 1725 | 2.0431 | 0.665 | 0.6852 | 0.665 | 0.6556 |
99
+ | 0.0958 | 16.0 | 1840 | 1.9203 | 0.7 | 0.7040 | 0.7 | 0.6985 |
100
+ | 0.0344 | 17.0 | 1955 | 2.1390 | 0.665 | 0.6780 | 0.665 | 0.6588 |
101
+ | 0.014 | 18.0 | 2070 | 2.3609 | 0.655 | 0.6692 | 0.655 | 0.6476 |
102
+ | 0.0085 | 19.0 | 2185 | 2.4310 | 0.65 | 0.6671 | 0.65 | 0.6408 |
103
+ | 0.0285 | 20.0 | 2300 | 2.4673 | 0.655 | 0.6715 | 0.655 | 0.6465 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.35.2
109
+ - Pytorch 2.1.0+cu121
110
+ - Datasets 2.16.1
111
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:23fa359e929fc5fd6acea6f71447ccae14e668f9e170603089a62d4b99529aca
3
  size 432960488
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7225ae82f90c08bbe7108614f659fb1d02c027d5ce5adf9c2bd0e458a2eec807
3
  size 432960488