Hoang Pham commited on
Commit
93f33a2
·
verified ·
1 Parent(s): 55b4ce0

End of training

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.5535353535353535
30
  - name: Recall
31
  type: recall
32
- value: 0.25393883225208524
33
  - name: F1
34
  type: f1
35
- value: 0.34815756035578144
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9386088666581164
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.2889
49
- - Precision: 0.5535
50
- - Recall: 0.2539
51
- - F1: 0.3482
52
- - Accuracy: 0.9386
53
 
54
  ## Model description
55
 
@@ -72,7 +72,7 @@ The following hyperparameters were used during training:
72
  - train_batch_size: 32
73
  - eval_batch_size: 32
74
  - seed: 42
75
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
  - num_epochs: 2
78
 
@@ -80,13 +80,13 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | No log | 1.0 | 107 | 0.3084 | 0.4140 | 0.0825 | 0.1376 | 0.9310 |
84
- | No log | 2.0 | 214 | 0.2889 | 0.5535 | 0.2539 | 0.3482 | 0.9386 |
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.44.2
90
  - Pytorch 2.4.1+cu121
91
  - Datasets 3.2.0
92
- - Tokenizers 0.19.1
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.44532803180914515
30
  - name: Recall
31
  type: recall
32
+ value: 0.20759962928637626
33
  - name: F1
34
  type: f1
35
+ value: 0.28318584070796454
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9365140438630243
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.2982
49
+ - Precision: 0.4453
50
+ - Recall: 0.2076
51
+ - F1: 0.2832
52
+ - Accuracy: 0.9365
53
 
54
  ## Model description
55
 
 
72
  - train_batch_size: 32
73
  - eval_batch_size: 32
74
  - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
  - num_epochs: 2
78
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 107 | 0.3151 | 0.3618 | 0.0825 | 0.1343 | 0.9310 |
84
+ | No log | 2.0 | 214 | 0.2982 | 0.4453 | 0.2076 | 0.2832 | 0.9365 |
85
 
86
 
87
  ### Framework versions
88
 
89
+ - Transformers 4.47.1
90
  - Pytorch 2.4.1+cu121
91
  - Datasets 3.2.0
92
+ - Tokenizers 0.21.0
runs/Dec22_08-03-58_0c07bf4a9517/events.out.tfevents.1734854640.0c07bf4a9517.6907.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:54c53209c304ae66f3a30cc4fbe50ee20e609cb6a77b4aa34d77c6f8dfa57ed8
3
- size 6006
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcef60bcf712ab6e56dea38af21a905c93324d620bbf75e9001d787d59cdec31
3
+ size 6832