Hoang Pham
commited on
End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -72,7 +72,7 @@ The following hyperparameters were used during training:
|
|
72 |
- train_batch_size: 32
|
73 |
- eval_batch_size: 32
|
74 |
- seed: 42
|
75 |
-
- optimizer:
|
76 |
- lr_scheduler_type: linear
|
77 |
- num_epochs: 2
|
78 |
|
@@ -80,13 +80,13 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| No log | 1.0 | 107 | 0.
|
84 |
-
| No log | 2.0 | 214 | 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.
|
90 |
- Pytorch 2.4.1+cu121
|
91 |
- Datasets 3.2.0
|
92 |
-
- Tokenizers 0.
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.44532803180914515
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.20759962928637626
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.28318584070796454
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9365140438630243
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.2982
|
49 |
+
- Precision: 0.4453
|
50 |
+
- Recall: 0.2076
|
51 |
+
- F1: 0.2832
|
52 |
+
- Accuracy: 0.9365
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
72 |
- train_batch_size: 32
|
73 |
- eval_batch_size: 32
|
74 |
- seed: 42
|
75 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
76 |
- lr_scheduler_type: linear
|
77 |
- num_epochs: 2
|
78 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| No log | 1.0 | 107 | 0.3151 | 0.3618 | 0.0825 | 0.1343 | 0.9310 |
|
84 |
+
| No log | 2.0 | 214 | 0.2982 | 0.4453 | 0.2076 | 0.2832 | 0.9365 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
+
- Transformers 4.47.1
|
90 |
- Pytorch 2.4.1+cu121
|
91 |
- Datasets 3.2.0
|
92 |
+
- Tokenizers 0.21.0
|
runs/Dec22_08-03-58_0c07bf4a9517/events.out.tfevents.1734854640.0c07bf4a9517.6907.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcef60bcf712ab6e56dea38af21a905c93324d620bbf75e9001d787d59cdec31
|
3 |
+
size 6832
|