Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: image-to-text
|
4 |
---
|
5 |
+
|
6 |
+
# <font color="turquoise"> <p style="text-align:center"> Translating Math Formula Images To LaTeX Sequences </p> </font>
|
7 |
+
|
8 |
+
|
9 |
+
Scaling Up Image-to-LaTeX Performance: Sumen An End-to-End Transformer Model With Large Dataset
|
10 |
+
|
11 |
+

|
12 |
+
|
13 |
+
## Performance
|
14 |
+
|
15 |
+

|
16 |
+
|
17 |
+
|
18 |
+

|
19 |
+
|
20 |
+
## Uses
|
21 |
+
|
22 |
+
#### Source code: https://github.com/hoang-quoc-trung/sumen
|
23 |
+
|
24 |
+
#### Inference
|
25 |
+
|
26 |
+
```python
|
27 |
+
import torch
|
28 |
+
import requests
|
29 |
+
from PIL import Image
|
30 |
+
from transformers import AutoProcessor, VisionEncoderDecoderModel
|
31 |
+
|
32 |
+
# Load model & processor
|
33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
model = VisionEncoderDecoderModel.from_pretrained('hoang-quoc-trung/sumen-base').to(device)
|
35 |
+
processor = AutoProcessor.from_pretrained('hoang-quoc-trung/sumen-base')
|
36 |
+
task_prompt = processor.tokenizer.bos_token
|
37 |
+
decoder_input_ids = processor.tokenizer(
|
38 |
+
task_prompt,
|
39 |
+
add_special_tokens=False,
|
40 |
+
return_tensors="pt"
|
41 |
+
).input_ids
|
42 |
+
# Load image
|
43 |
+
img_url = 'https://raw.githubusercontent.com/hoang-quoc-trung/sumen/main/assets/example_1.png'
|
44 |
+
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
45 |
+
pixel_values = processor.image_processor(
|
46 |
+
image,
|
47 |
+
return_tensors="pt",
|
48 |
+
data_format="channels_first",
|
49 |
+
).pixel_values
|
50 |
+
# Generate LaTeX expression
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model.generate(
|
53 |
+
pixel_values.to(device),
|
54 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
55 |
+
max_length=model.decoder.config.max_length,
|
56 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
57 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
58 |
+
use_cache=True,
|
59 |
+
num_beams=4,
|
60 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
61 |
+
return_dict_in_generate=True,
|
62 |
+
)
|
63 |
+
sequence = processor.tokenizer.batch_decode(outputs.sequences)[0]
|
64 |
+
sequence = sequence.replace(
|
65 |
+
processor.tokenizer.eos_token, ""
|
66 |
+
).replace(
|
67 |
+
processor.tokenizer.pad_token, ""
|
68 |
+
).replace(processor.tokenizer.bos_token,"")
|
69 |
+
print(sequence)
|
70 |
+
```
|