Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- recommendation
|
7 |
+
- collaborative filtering
|
8 |
+
---
|
9 |
+
|
10 |
+
# EasyRec-Small
|
11 |
+
|
12 |
+
## Overview
|
13 |
+
|
14 |
+
- **Description**: EasyRec is a series of language models designed for recommendations, trained to match the textual profiles of users and items with collaborative signals.
|
15 |
+
- **Usage**: You can use EasyRec to encode user and item text embeddings based on the textual profiles that reflect their preferences for various recommendation scenarios.
|
16 |
+
- **Evaluation**: We evaluate the performance of EasyRec in: (i) Text-based zero-shot recommendation and (ii) Text-enhanced collaborative filtering.
|
17 |
+
- **Finetuned from model:** EasyRec is finetuned from [RoBERTa](https://huggingface.co/FacebookAI/roberta-large) within English.
|
18 |
+
|
19 |
+
For details please refer to our [💻[GitHub Code](https://github.com/HKUDS/EasyRec)] and [📖[Paper]()].
|
20 |
+
|
21 |
+
## Get Started
|
22 |
+
|
23 |
+
### Environment
|
24 |
+
|
25 |
+
Please run the following commands to create a conda environment:
|
26 |
+
|
27 |
+
```bash
|
28 |
+
conda create -y -n easyrec python=3.11
|
29 |
+
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1
|
30 |
+
pip install -U "transformers==4.40.0" --upgrade
|
31 |
+
pip install accelerate==0.28.0
|
32 |
+
pip install tqdm
|
33 |
+
pip install sentencepiece==0.2.0
|
34 |
+
pip install scipy==1.9.3
|
35 |
+
pip install setproctitle
|
36 |
+
pip install sentence_transformers
|
37 |
+
```
|
38 |
+
|
39 |
+
### Example Codes
|
40 |
+
Please first download the codes.
|
41 |
+
```ssh
|
42 |
+
git clone https://github.com/HKUDS/EasyRec.git
|
43 |
+
cd EasyRec
|
44 |
+
```
|
45 |
+
|
46 |
+
Here is an example code snippet to utilize EasyRec for encoding **text embeddings** based on user and item profiles for recommendations.
|
47 |
+
|
48 |
+
```Python
|
49 |
+
import torch
|
50 |
+
from model import Easyrec
|
51 |
+
import torch.nn.functional as F
|
52 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
53 |
+
|
54 |
+
config = AutoConfig.from_pretrained("hkuds/easyrec-roberta-small")
|
55 |
+
model = Easyrec.from_pretrained("hkuds/easyrec-roberta-small", config=config,)
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained("hkuds/easyrec-roberta-small", use_fast=False,)
|
57 |
+
|
58 |
+
profiles = [
|
59 |
+
'This user is a basketball fan and likes to play basketball and watch NBA games.', # user
|
60 |
+
'This basketball draws in NBA enthusiasts.', # item 1
|
61 |
+
'This item is nice for swimming lovers.' # item 2
|
62 |
+
]
|
63 |
+
|
64 |
+
inputs = tokenizer(profiles, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
65 |
+
with torch.inference_mode():
|
66 |
+
embeddings = model.encode(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask)
|
67 |
+
embeddings = F.normalize(embeddings.pooler_output.detach().float(), dim=-1)
|
68 |
+
|
69 |
+
print(embeddings[0] @ embeddings[1]) # 0.9260
|
70 |
+
print(embeddings[0] @ embeddings[2]) # 0.5834
|
71 |
+
```
|
72 |
+
|
73 |
+
### Model List
|
74 |
+
We release a series of EasyRec checkpoints with varying sizes. You can easily load these models from Hugging Face by replacing the model name.
|
75 |
+
| Model | Model Size | Recall@20 on Amazon-Sports |
|
76 |
+
|:-------------------------------|:--------:| :--------:|
|
77 |
+
| [hkuds/easyrec-roberta-small](https://huggingface.co/hkuds/easyrec-roberta-small) | 82M | 0.0286 |
|
78 |
+
| [hkuds/easyrec-roberta-base](https://huggingface.co/hkuds/easyrec-roberta-base) | 125M | 0.0518 |
|
79 |
+
| [hkuds/easyrec-roberta-large](https://huggingface.co/hkuds/easyrec-roberta-large) | 355M | 0.0557 |
|
80 |
+
|
81 |
+
## 🌟 Citation
|
82 |
+
If you find this work is helpful to your research, please consider citing our paper:
|
83 |
+
```bibtex
|
84 |
+
@inproceedings{ren2024easyrec,
|
85 |
+
title={EasyRec: Simple yet Effective Language Models for Recommendation},
|
86 |
+
author={Ren, Xubin and Huang, Chao},
|
87 |
+
journal={arXiv preprint},
|
88 |
+
year={2024}
|
89 |
+
}
|
90 |
+
```
|
91 |
+
**Thanks for your interest in our work!**
|