--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_base_adamax_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9016666666666666 --- # smids_5x_deit_base_adamax_0001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9013 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1558 | 1.0 | 375 | 0.3339 | 0.8717 | | 0.0801 | 2.0 | 750 | 0.2674 | 0.9 | | 0.064 | 3.0 | 1125 | 0.4397 | 0.9033 | | 0.0238 | 4.0 | 1500 | 0.5225 | 0.875 | | 0.0319 | 5.0 | 1875 | 0.5721 | 0.905 | | 0.0056 | 6.0 | 2250 | 0.5081 | 0.9083 | | 0.0107 | 7.0 | 2625 | 0.5806 | 0.91 | | 0.0108 | 8.0 | 3000 | 0.6004 | 0.9067 | | 0.0023 | 9.0 | 3375 | 0.7259 | 0.895 | | 0.0005 | 10.0 | 3750 | 0.7347 | 0.9033 | | 0.0001 | 11.0 | 4125 | 0.7841 | 0.8967 | | 0.0 | 12.0 | 4500 | 0.7216 | 0.9167 | | 0.0 | 13.0 | 4875 | 0.7364 | 0.9083 | | 0.0053 | 14.0 | 5250 | 0.7059 | 0.9067 | | 0.0001 | 15.0 | 5625 | 0.7607 | 0.9017 | | 0.0 | 16.0 | 6000 | 0.7546 | 0.9083 | | 0.0001 | 17.0 | 6375 | 0.7848 | 0.9033 | | 0.0042 | 18.0 | 6750 | 0.7392 | 0.8983 | | 0.0 | 19.0 | 7125 | 0.7453 | 0.9183 | | 0.0 | 20.0 | 7500 | 0.8298 | 0.9067 | | 0.0 | 21.0 | 7875 | 0.8069 | 0.9067 | | 0.0038 | 22.0 | 8250 | 0.7995 | 0.9067 | | 0.0 | 23.0 | 8625 | 0.8015 | 0.91 | | 0.0 | 24.0 | 9000 | 0.8099 | 0.9067 | | 0.0 | 25.0 | 9375 | 0.7950 | 0.9117 | | 0.0 | 26.0 | 9750 | 0.8272 | 0.91 | | 0.0 | 27.0 | 10125 | 0.7940 | 0.905 | | 0.0 | 28.0 | 10500 | 0.8281 | 0.915 | | 0.0 | 29.0 | 10875 | 0.8337 | 0.9067 | | 0.0031 | 30.0 | 11250 | 0.8245 | 0.9067 | | 0.0 | 31.0 | 11625 | 0.8597 | 0.9033 | | 0.0 | 32.0 | 12000 | 0.8445 | 0.9067 | | 0.0 | 33.0 | 12375 | 0.8424 | 0.9033 | | 0.0 | 34.0 | 12750 | 0.8455 | 0.9017 | | 0.0 | 35.0 | 13125 | 0.8539 | 0.9017 | | 0.0 | 36.0 | 13500 | 0.8610 | 0.8967 | | 0.0 | 37.0 | 13875 | 0.8681 | 0.905 | | 0.0026 | 38.0 | 14250 | 0.8625 | 0.9017 | | 0.0 | 39.0 | 14625 | 0.8694 | 0.9067 | | 0.0 | 40.0 | 15000 | 0.8718 | 0.9 | | 0.0 | 41.0 | 15375 | 0.8794 | 0.905 | | 0.0 | 42.0 | 15750 | 0.8824 | 0.9 | | 0.0 | 43.0 | 16125 | 0.8842 | 0.905 | | 0.0 | 44.0 | 16500 | 0.8874 | 0.9017 | | 0.0 | 45.0 | 16875 | 0.8897 | 0.9017 | | 0.0 | 46.0 | 17250 | 0.8954 | 0.9017 | | 0.0025 | 47.0 | 17625 | 0.8975 | 0.9017 | | 0.0 | 48.0 | 18000 | 0.9000 | 0.9017 | | 0.0 | 49.0 | 18375 | 0.9014 | 0.9017 | | 0.0023 | 50.0 | 18750 | 0.9013 | 0.9017 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2