File size: 40,465 Bytes
24c2665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 |
import sympy
import re
from sympy import matrix_symbols, simplify, factor, expand, apart, expand_trig
from antlr4 import InputStream, CommonTokenStream
from antlr4.error.ErrorListener import ErrorListener
try:
from gen.PSParser import PSParser
from gen.PSLexer import PSLexer
from gen.PSListener import PSListener
except Exception:
from .gen.PSParser import PSParser
from .gen.PSLexer import PSLexer
from .gen.PSListener import PSListener
from sympy.printing.str import StrPrinter
from sympy.parsing.sympy_parser import parse_expr
import hashlib
is_real = None
frac_type = r'\frac'
variances = {}
var = {}
VARIABLE_VALUES = {}
def set_real(value):
global is_real
is_real = value
def set_variances(vars):
global variances
variances = vars
global var
var = {}
for variance in vars:
var[str(variance)] = vars[variance]
def latex2sympy(sympy: str, variable_values={}):
# record frac
global frac_type
if sympy.find(r'\frac') != -1:
frac_type = r'\frac'
if sympy.find(r'\dfrac') != -1:
frac_type = r'\dfrac'
if sympy.find(r'\tfrac') != -1:
frac_type = r'\tfrac'
sympy = sympy.replace(r'\dfrac', r'\frac')
sympy = sympy.replace(r'\tfrac', r'\frac')
# Translate Transpose
sympy = sympy.replace(r'\mathrm{T}', 'T', -1)
# Translate Derivative
sympy = sympy.replace(r'\mathrm{d}', 'd', -1).replace(r'{\rm d}', 'd', -1)
# Translate Matrix
sympy = sympy.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
# Translate Permutation
sympy = re.sub(r"\(([a-zA-Z0-9+\-*/\\ ]+?)\)_{([a-zA-Z0-9+\-*/\\ ]+?)}", r"\\frac{(\1)!}{((\1)-(\2))!}", sympy)
# Remove \displaystyle
sympy = sympy.replace(r'\displaystyle', ' ', -1)
# Remove \quad
sympy = sympy.replace(r'\quad', ' ', -1).replace(r'\qquad', ' ', -1).replace(r'~', ' ', -1).replace(r'\,', ' ', -1)
# Remove $
sympy = sympy.replace(r'$', ' ', -1)
# variable values
global VARIABLE_VALUES
if len(variable_values) > 0:
VARIABLE_VALUES = variable_values
else:
VARIABLE_VALUES = {}
# setup listener
matherror = MathErrorListener(sympy)
# stream input
stream = InputStream(sympy)
lex = PSLexer(stream)
lex.removeErrorListeners()
lex.addErrorListener(matherror)
tokens = CommonTokenStream(lex)
parser = PSParser(tokens)
# remove default console error listener
parser.removeErrorListeners()
parser.addErrorListener(matherror)
# process the input
return_data = None
math = parser.math()
# if a list
if math.relation_list():
return_data = []
# go over list items
relation_list = math.relation_list().relation_list_content()
for list_item in relation_list.relation():
expr = convert_relation(list_item)
return_data.append(expr)
# if not, do default
else:
relation = math.relation()
return_data = convert_relation(relation)
return return_data
class MathErrorListener(ErrorListener):
def __init__(self, src):
super(ErrorListener, self).__init__()
self.src = src
def syntaxError(self, recog, symbol, line, col, msg, e):
fmt = "%s\n%s\n%s"
marker = "~" * col + "^"
if msg.startswith("missing"):
err = fmt % (msg, self.src, marker)
elif msg.startswith("no viable"):
err = fmt % ("I expected something else here", self.src, marker)
elif msg.startswith("mismatched"):
names = PSParser.literalNames
expected = [names[i] for i in e.getExpectedTokens() if i < len(names)]
if len(expected) < 10:
expected = " ".join(expected)
err = (fmt % ("I expected one of these: " + expected,
self.src, marker))
else:
err = (fmt % ("I expected something else here", self.src, marker))
else:
err = fmt % ("I don't understand this", self.src, marker)
raise Exception(err)
def convert_relation(rel):
if rel.expr():
return convert_expr(rel.expr())
lh = convert_relation(rel.relation(0))
rh = convert_relation(rel.relation(1))
if rel.LT():
return sympy.StrictLessThan(lh, rh, evaluate=False)
elif rel.LTE():
return sympy.LessThan(lh, rh, evaluate=False)
elif rel.GT():
return sympy.StrictGreaterThan(lh, rh, evaluate=False)
elif rel.GTE():
return sympy.GreaterThan(lh, rh, evaluate=False)
elif rel.EQUAL():
return sympy.Eq(lh, rh, evaluate=False)
elif rel.ASSIGNMENT():
# !Use Global variances
if lh.is_Symbol:
# set value
variances[lh] = rh
var[str(lh)] = rh
return rh
else:
# find the symbols in lh - rh
equation = lh - rh
syms = equation.atoms(sympy.Symbol)
if len(syms) > 0:
# Solve equation
result = []
for sym in syms:
values = sympy.solve(equation, sym)
for value in values:
result.append(sympy.Eq(sym, value, evaluate=False))
return result
else:
return sympy.Eq(lh, rh, evaluate=False)
elif rel.IN():
# !Use Global variances
if hasattr(rh, 'is_Pow') and rh.is_Pow and hasattr(rh.exp, 'is_Mul'):
n = rh.exp.args[0]
m = rh.exp.args[1]
if n in variances:
n = variances[n]
if m in variances:
m = variances[m]
rh = sympy.MatrixSymbol(lh, n, m)
variances[lh] = rh
var[str(lh)] = rh
else:
raise Exception("Don't support this form of definition of matrix symbol.")
return lh
elif rel.UNEQUAL():
return sympy.Ne(lh, rh, evaluate=False)
def convert_expr(expr):
if expr.additive():
return convert_add(expr.additive())
def convert_elementary_transform(matrix, transform):
if transform.transform_scale():
transform_scale = transform.transform_scale()
transform_atom = transform_scale.transform_atom()
k = None
num = int(transform_atom.NUMBER().getText()) - 1
if transform_scale.expr():
k = convert_expr(transform_scale.expr())
elif transform_scale.group():
k = convert_expr(transform_scale.group().expr())
elif transform_scale.SUB():
k = -1
else:
k = 1
if transform_atom.LETTER_NO_E().getText() == 'r':
matrix = matrix.elementary_row_op(op='n->kn', row=num, k=k)
elif transform_atom.LETTER_NO_E().getText() == 'c':
matrix = matrix.elementary_col_op(op='n->kn', col=num, k=k)
else:
raise Exception('Row and col don\'s match')
elif transform.transform_swap():
first_atom = transform.transform_swap().transform_atom()[0]
second_atom = transform.transform_swap().transform_atom()[1]
first_num = int(first_atom.NUMBER().getText()) - 1
second_num = int(second_atom.NUMBER().getText()) - 1
if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
raise Exception('Row and col don\'s match')
elif first_atom.LETTER_NO_E().getText() == 'r':
matrix = matrix.elementary_row_op(op='n<->m', row1=first_num, row2=second_num)
elif first_atom.LETTER_NO_E().getText() == 'c':
matrix = matrix.elementary_col_op(op='n<->m', col1=first_num, col2=second_num)
else:
raise Exception('Row and col don\'s match')
elif transform.transform_assignment():
first_atom = transform.transform_assignment().transform_atom()
second_atom = transform.transform_assignment().transform_scale().transform_atom()
transform_scale = transform.transform_assignment().transform_scale()
k = None
if transform_scale.expr():
k = convert_expr(transform_scale.expr())
elif transform_scale.group():
k = convert_expr(transform_scale.group().expr())
elif transform_scale.SUB():
k = -1
else:
k = 1
first_num = int(first_atom.NUMBER().getText()) - 1
second_num = int(second_atom.NUMBER().getText()) - 1
if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
raise Exception('Row and col don\'s match')
elif first_atom.LETTER_NO_E().getText() == 'r':
matrix = matrix.elementary_row_op(op='n->n+km', k=k, row1=first_num, row2=second_num)
elif first_atom.LETTER_NO_E().getText() == 'c':
matrix = matrix.elementary_col_op(op='n->n+km', k=k, col1=first_num, col2=second_num)
else:
raise Exception('Row and col don\'s match')
return matrix
def convert_matrix(matrix):
# build matrix
row = matrix.matrix_row()
tmp = []
rows = 0
mat = None
for r in row:
tmp.append([])
for expr in r.expr():
tmp[rows].append(convert_expr(expr))
rows = rows + 1
mat = sympy.Matrix(tmp)
if hasattr(matrix, 'MATRIX_XRIGHTARROW') and matrix.MATRIX_XRIGHTARROW():
transforms_list = matrix.elementary_transforms()
if len(transforms_list) == 1:
for transform in transforms_list[0].elementary_transform():
mat = convert_elementary_transform(mat, transform)
elif len(transforms_list) == 2:
# firstly transform top of xrightarrow
for transform in transforms_list[1].elementary_transform():
mat = convert_elementary_transform(mat, transform)
# firstly transform bottom of xrightarrow
for transform in transforms_list[0].elementary_transform():
mat = convert_elementary_transform(mat, transform)
return mat
def add_flat(lh, rh):
if hasattr(lh, 'is_Add') and lh.is_Add or hasattr(rh, 'is_Add') and rh.is_Add:
args = []
if hasattr(lh, 'is_Add') and lh.is_Add:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_Add') and rh.is_Add:
args = args + list(rh.args)
else:
args += [rh]
return sympy.Add(*args, evaluate=False)
else:
return sympy.Add(lh, rh, evaluate=False)
def mat_add_flat(lh, rh):
if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd or hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
args = []
if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
args = args + list(rh.args)
else:
args += [rh]
return sympy.MatAdd(*[arg.doit() for arg in args], evaluate=False)
else:
return sympy.MatAdd(lh.doit(), rh.doit(), evaluate=False)
def mul_flat(lh, rh):
if hasattr(lh, 'is_Mul') and lh.is_Mul or hasattr(rh, 'is_Mul') and rh.is_Mul:
args = []
if hasattr(lh, 'is_Mul') and lh.is_Mul:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_Mul') and rh.is_Mul:
args = args + list(rh.args)
else:
args += [rh]
return sympy.Mul(*args, evaluate=False)
else:
return sympy.Mul(lh, rh, evaluate=False)
def mat_mul_flat(lh, rh):
if hasattr(lh, 'is_MatMul') and lh.is_MatMul or hasattr(rh, 'is_MatMul') and rh.is_MatMul:
args = []
if hasattr(lh, 'is_MatMul') and lh.is_MatMul:
args += list(lh.args)
else:
args += [lh]
if hasattr(rh, 'is_MatMul') and rh.is_MatMul:
args = args + list(rh.args)
else:
args += [rh]
return sympy.MatMul(*[arg.doit() for arg in args], evaluate=False)
else:
if hasattr(lh, 'doit') and hasattr(rh, 'doit'):
return sympy.MatMul(lh.doit(), rh.doit(), evaluate=False)
elif hasattr(lh, 'doit') and not hasattr(rh, 'doit'):
return sympy.MatMul(lh.doit(), rh, evaluate=False)
elif not hasattr(lh, 'doit') and hasattr(rh, 'doit'):
return sympy.MatMul(lh, rh.doit(), evaluate=False)
else:
return sympy.MatMul(lh, rh, evaluate=False)
def convert_add(add):
if add.ADD():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
if lh.is_Matrix or rh.is_Matrix:
return mat_add_flat(lh, rh)
else:
return add_flat(lh, rh)
elif add.SUB():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
if lh.is_Matrix or rh.is_Matrix:
return mat_add_flat(lh, mat_mul_flat(-1, rh))
else:
# If we want to force ordering for variables this should be:
# return Sub(lh, rh, evaluate=False)
if not rh.is_Matrix and rh.func.is_Number:
rh = -rh
else:
rh = mul_flat(-1, rh)
return add_flat(lh, rh)
else:
return convert_mp(add.mp())
def convert_mp(mp):
if hasattr(mp, 'mp'):
mp_left = mp.mp(0)
mp_right = mp.mp(1)
else:
mp_left = mp.mp_nofunc(0)
mp_right = mp.mp_nofunc(1)
if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
if lh.is_Matrix or rh.is_Matrix:
return mat_mul_flat(lh, rh)
else:
return mul_flat(lh, rh)
elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
if lh.is_Matrix or rh.is_Matrix:
return sympy.MatMul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
else:
return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
elif mp.CMD_MOD():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
if rh.is_Matrix:
raise Exception("Cannot perform modulo operation with a matrix as an operand")
else:
return sympy.Mod(lh, rh, evaluate=False)
else:
if hasattr(mp, 'unary'):
return convert_unary(mp.unary())
else:
return convert_unary(mp.unary_nofunc())
def convert_unary(unary):
if hasattr(unary, 'unary'):
nested_unary = unary.unary()
else:
nested_unary = unary.unary_nofunc()
if hasattr(unary, 'postfix_nofunc'):
first = unary.postfix()
tail = unary.postfix_nofunc()
postfix = [first] + tail
else:
postfix = unary.postfix()
if unary.ADD():
return convert_unary(nested_unary)
elif unary.SUB():
tmp_convert_nested_unary = convert_unary(nested_unary)
if tmp_convert_nested_unary.is_Matrix:
return mat_mul_flat(-1, tmp_convert_nested_unary, evaluate=False)
else:
if tmp_convert_nested_unary.func.is_Number:
return -tmp_convert_nested_unary
else:
return mul_flat(-1, tmp_convert_nested_unary)
elif postfix:
return convert_postfix_list(postfix)
def convert_postfix_list(arr, i=0):
if i >= len(arr):
raise Exception("Index out of bounds")
res = convert_postfix(arr[i])
if isinstance(res, sympy.Expr) or isinstance(res, sympy.Matrix) or res is sympy.S.EmptySet:
if i == len(arr) - 1:
return res # nothing to multiply by
else:
# multiply by next
rh = convert_postfix_list(arr, i + 1)
if res.is_Matrix or rh.is_Matrix:
return mat_mul_flat(res, rh)
else:
return mul_flat(res, rh)
elif isinstance(res, tuple) or isinstance(res, list) or isinstance(res, dict):
return res
else: # must be derivative
wrt = res[0]
if i == len(arr) - 1:
raise Exception("Expected expression for derivative")
else:
expr = convert_postfix_list(arr, i + 1)
return sympy.Derivative(expr, wrt)
def do_subs(expr, at):
if at.expr():
at_expr = convert_expr(at.expr())
syms = at_expr.atoms(sympy.Symbol)
if len(syms) == 0:
return expr
elif len(syms) > 0:
sym = next(iter(syms))
return expr.subs(sym, at_expr)
elif at.equality():
lh = convert_expr(at.equality().expr(0))
rh = convert_expr(at.equality().expr(1))
return expr.subs(lh, rh)
def convert_postfix(postfix):
if hasattr(postfix, 'exp'):
exp_nested = postfix.exp()
else:
exp_nested = postfix.exp_nofunc()
exp = convert_exp(exp_nested)
for op in postfix.postfix_op():
if op.BANG():
if isinstance(exp, list):
raise Exception("Cannot apply postfix to derivative")
exp = sympy.factorial(exp, evaluate=False)
elif op.eval_at():
ev = op.eval_at()
at_b = None
at_a = None
if ev.eval_at_sup():
at_b = do_subs(exp, ev.eval_at_sup())
if ev.eval_at_sub():
at_a = do_subs(exp, ev.eval_at_sub())
if at_b is not None and at_a is not None:
exp = add_flat(at_b, mul_flat(at_a, -1))
elif at_b is not None:
exp = at_b
elif at_a is not None:
exp = at_a
elif op.transpose():
try:
exp = exp.T
except:
try:
exp = sympy.transpose(exp)
except:
pass
pass
return exp
def convert_exp(exp):
if hasattr(exp, 'exp'):
exp_nested = exp.exp()
else:
exp_nested = exp.exp_nofunc()
if exp_nested:
base = convert_exp(exp_nested)
if isinstance(base, list):
raise Exception("Cannot raise derivative to power")
if exp.atom():
exponent = convert_atom(exp.atom())
elif exp.expr():
exponent = convert_expr(exp.expr())
return sympy.Pow(base, exponent, evaluate=False)
else:
if hasattr(exp, 'comp'):
return convert_comp(exp.comp())
else:
return convert_comp(exp.comp_nofunc())
def convert_comp(comp):
if comp.group():
return convert_expr(comp.group().expr())
elif comp.norm_group():
return convert_expr(comp.norm_group().expr()).norm()
elif comp.abs_group():
return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False)
elif comp.floor_group():
return handle_floor(convert_expr(comp.floor_group().expr()))
elif comp.ceil_group():
return handle_ceil(convert_expr(comp.ceil_group().expr()))
elif comp.atom():
return convert_atom(comp.atom())
elif comp.frac():
return convert_frac(comp.frac())
elif comp.binom():
return convert_binom(comp.binom())
elif comp.matrix():
return convert_matrix(comp.matrix())
elif comp.det():
# !Use Global variances
return convert_matrix(comp.det()).subs(variances).det()
elif comp.func():
return convert_func(comp.func())
def convert_atom(atom):
if atom.atom_expr():
atom_expr = atom.atom_expr()
# find the atom's text
atom_text = ''
if atom_expr.LETTER_NO_E():
atom_text = atom_expr.LETTER_NO_E().getText()
if atom_text == "I":
return sympy.I
elif atom_expr.GREEK_CMD():
atom_text = atom_expr.GREEK_CMD().getText()[1:].strip()
elif atom_expr.OTHER_SYMBOL_CMD():
atom_text = atom_expr.OTHER_SYMBOL_CMD().getText().strip()
elif atom_expr.accent():
atom_accent = atom_expr.accent()
# get name for accent
name = atom_accent.start.text
# name = atom_accent.start.text[1:]
# exception: check if bar or overline which are treated both as bar
# if name in ["bar", "overline"]:
# name = "bar"
# if name in ["vec", "overrightarrow"]:
# name = "vec"
# if name in ["tilde", "widetilde"]:
# name = "tilde"
# get the base (variable)
base = atom_accent.base.getText()
# set string to base+name
atom_text = name + '{' + base + '}'
# find atom's subscript, if any
subscript_text = ''
if atom_expr.subexpr():
subexpr = atom_expr.subexpr()
subscript = None
if subexpr.expr(): # subscript is expr
subscript = subexpr.expr().getText().strip()
elif subexpr.atom(): # subscript is atom
subscript = subexpr.atom().getText().strip()
elif subexpr.args(): # subscript is args
subscript = subexpr.args().getText().strip()
subscript_inner_text = StrPrinter().doprint(subscript)
if len(subscript_inner_text) > 1:
subscript_text = '_{' + subscript_inner_text + '}'
else:
subscript_text = '_' + subscript_inner_text
# construct the symbol using the text and optional subscript
atom_symbol = sympy.Symbol(atom_text + subscript_text, real=is_real)
# for matrix symbol
matrix_symbol = None
global var
if atom_text + subscript_text in var:
try:
rh = var[atom_text + subscript_text]
shape = sympy.shape(rh)
matrix_symbol = sympy.MatrixSymbol(atom_text + subscript_text, shape[0], shape[1])
variances[matrix_symbol] = variances[atom_symbol]
except:
pass
# find the atom's superscript, and return as a Pow if found
if atom_expr.supexpr():
supexpr = atom_expr.supexpr()
func_pow = None
if supexpr.expr():
func_pow = convert_expr(supexpr.expr())
else:
func_pow = convert_atom(supexpr.atom())
return sympy.Pow(atom_symbol, func_pow, evaluate=False)
return atom_symbol if not matrix_symbol else matrix_symbol
elif atom.SYMBOL():
s = atom.SYMBOL().getText().replace("\\$", "").replace("\\%", "")
if s == "\\infty":
return sympy.oo
elif s == '\\pi':
return sympy.pi
elif s == '\\emptyset':
return sympy.S.EmptySet
else:
raise Exception("Unrecognized symbol")
elif atom.NUMBER():
s = atom.NUMBER().getText().replace(",", "")
try:
sr = sympy.Rational(s)
return sr
except (TypeError, ValueError):
return sympy.Number(s)
elif atom.E_NOTATION():
s = atom.E_NOTATION().getText().replace(",", "")
try:
sr = sympy.Rational(s)
return sr
except (TypeError, ValueError):
return sympy.Number(s)
elif atom.DIFFERENTIAL():
var = get_differential_var(atom.DIFFERENTIAL())
return sympy.Symbol('d' + var.name, real=is_real)
elif atom.mathit():
text = rule2text(atom.mathit().mathit_text())
return sympy.Symbol(text, real=is_real)
elif atom.VARIABLE():
text = atom.VARIABLE().getText()
is_percent = text.endswith("\\%")
trim_amount = 3 if is_percent else 1
name = text[10:]
name = name[0:len(name) - trim_amount]
# add hash to distinguish from regular symbols
hash = hashlib.md5(name.encode()).hexdigest()
symbol_name = name + hash
# replace the variable for already known variable values
if name in VARIABLE_VALUES:
# if a sympy class
if isinstance(VARIABLE_VALUES[name], tuple(sympy.core.all_classes)):
symbol = VARIABLE_VALUES[name]
# if NOT a sympy class
else:
symbol = parse_expr(str(VARIABLE_VALUES[name]))
else:
symbol = sympy.Symbol(symbol_name, real=is_real)
if is_percent:
return sympy.Mul(symbol, sympy.Pow(100, -1, evaluate=False), evaluate=False)
# return the symbol
return symbol
elif atom.PERCENT_NUMBER():
text = atom.PERCENT_NUMBER().getText().replace("\\%", "").replace(",", "")
try:
number = sympy.Rational(text)
except (TypeError, ValueError):
number = sympy.Number(text)
percent = sympy.Rational(number, 100)
return percent
def rule2text(ctx):
stream = ctx.start.getInputStream()
# starting index of starting token
startIdx = ctx.start.start
# stopping index of stopping token
stopIdx = ctx.stop.stop
return stream.getText(startIdx, stopIdx)
def convert_frac(frac):
diff_op = False
partial_op = False
lower_itv = frac.lower.getSourceInterval()
lower_itv_len = lower_itv[1] - lower_itv[0] + 1
if (frac.lower.start == frac.lower.stop and
frac.lower.start.type == PSLexer.DIFFERENTIAL):
wrt = get_differential_var_str(frac.lower.start.text)
diff_op = True
elif (lower_itv_len == 2 and
frac.lower.start.type == PSLexer.SYMBOL and
frac.lower.start.text == '\\partial' and
(frac.lower.stop.type == PSLexer.LETTER_NO_E or frac.lower.stop.type == PSLexer.SYMBOL)):
partial_op = True
wrt = frac.lower.stop.text
if frac.lower.stop.type == PSLexer.SYMBOL:
wrt = wrt[1:]
if diff_op or partial_op:
wrt = sympy.Symbol(wrt, real=is_real)
if (diff_op and frac.upper.start == frac.upper.stop and
frac.upper.start.type == PSLexer.LETTER_NO_E and
frac.upper.start.text == 'd'):
return [wrt]
elif (partial_op and frac.upper.start == frac.upper.stop and
frac.upper.start.type == PSLexer.SYMBOL and
frac.upper.start.text == '\\partial'):
return [wrt]
upper_text = rule2text(frac.upper)
expr_top = None
if diff_op and upper_text.startswith('d'):
expr_top = latex2sympy(upper_text[1:])
elif partial_op and frac.upper.start.text == '\\partial':
expr_top = latex2sympy(upper_text[len('\\partial'):])
if expr_top:
return sympy.Derivative(expr_top, wrt)
expr_top = convert_expr(frac.upper)
expr_bot = convert_expr(frac.lower)
if expr_top.is_Matrix or expr_bot.is_Matrix:
return sympy.MatMul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)
else:
return sympy.Mul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)
def convert_binom(binom):
expr_top = convert_expr(binom.upper)
expr_bot = convert_expr(binom.lower)
return sympy.binomial(expr_top, expr_bot)
def convert_func(func):
if func.func_normal_single_arg():
if func.L_PAREN(): # function called with parenthesis
arg = convert_func_arg(func.func_single_arg())
else:
arg = convert_func_arg(func.func_single_arg_noparens())
name = func.func_normal_single_arg().start.text[1:]
# change arc<trig> -> a<trig>
if name in ["arcsin", "arccos", "arctan", "arccsc", "arcsec",
"arccot"]:
name = "a" + name[3:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
elif name in ["arsinh", "arcosh", "artanh"]:
name = "a" + name[2:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
elif name in ["arcsinh", "arccosh", "arctanh"]:
name = "a" + name[3:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
elif name == "operatorname":
operatorname = func.func_normal_single_arg().func_operator_name.getText()
if operatorname in ["arsinh", "arcosh", "artanh"]:
operatorname = "a" + operatorname[2:]
expr = getattr(sympy.functions, operatorname)(arg, evaluate=False)
elif operatorname in ["arcsinh", "arccosh", "arctanh"]:
operatorname = "a" + operatorname[3:]
expr = getattr(sympy.functions, operatorname)(arg, evaluate=False)
elif operatorname == "floor":
expr = handle_floor(arg)
elif operatorname == "ceil":
expr = handle_ceil(arg)
elif operatorname == 'eye':
expr = sympy.eye(arg)
elif operatorname == 'rank':
expr = sympy.Integer(arg.rank())
elif operatorname in ['trace', 'tr']:
expr = arg.trace()
elif operatorname == 'rref':
expr = arg.rref()[0]
elif operatorname == 'nullspace':
expr = arg.nullspace()
elif operatorname == 'norm':
expr = arg.norm()
elif operatorname == 'cols':
expr = [arg.col(i) for i in range(arg.cols)]
elif operatorname == 'rows':
expr = [arg.row(i) for i in range(arg.rows)]
elif operatorname in ['eig', 'eigen', 'diagonalize']:
expr = arg.diagonalize()
elif operatorname in ['eigenvals', 'eigenvalues']:
expr = arg.eigenvals()
elif operatorname in ['eigenvects', 'eigenvectors']:
expr = arg.eigenvects()
elif operatorname in ['svd', 'SVD']:
expr = arg.singular_value_decomposition()
elif name in ["log", "ln"]:
if func.subexpr():
if func.subexpr().atom():
base = convert_atom(func.subexpr().atom())
else:
base = convert_expr(func.subexpr().expr())
elif name == "log":
base = 10
elif name == "ln":
base = sympy.E
expr = sympy.log(arg, base, evaluate=False)
elif name in ["exp", "exponentialE"]:
expr = sympy.exp(arg)
elif name == "floor":
expr = handle_floor(arg)
elif name == "ceil":
expr = handle_ceil(arg)
elif name == 'det':
expr = arg.det()
func_pow = None
should_pow = True
if func.supexpr():
if func.supexpr().expr():
func_pow = convert_expr(func.supexpr().expr())
else:
func_pow = convert_atom(func.supexpr().atom())
if name in ["sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh", "tanh"]:
if func_pow == -1:
name = "a" + name
should_pow = False
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if func_pow and should_pow:
expr = sympy.Pow(expr, func_pow, evaluate=False)
return expr
elif func.func_normal_multi_arg():
if func.L_PAREN(): # function called with parenthesis
args = func.func_multi_arg().getText().split(",")
else:
args = func.func_multi_arg_noparens().split(",")
args = list(map(lambda arg: latex2sympy(arg, VARIABLE_VALUES), args))
name = func.func_normal_multi_arg().start.text[1:]
if name == "operatorname":
operatorname = func.func_normal_multi_arg().func_operator_name.getText()
if operatorname in ["gcd", "lcm"]:
expr = handle_gcd_lcm(operatorname, args)
elif operatorname == 'zeros':
expr = sympy.zeros(*args)
elif operatorname == 'ones':
expr = sympy.ones(*args)
elif operatorname == 'diag':
expr = sympy.diag(*args)
elif operatorname == 'hstack':
expr = sympy.Matrix.hstack(*args)
elif operatorname == 'vstack':
expr = sympy.Matrix.vstack(*args)
elif operatorname in ['orth', 'ortho', 'orthogonal', 'orthogonalize']:
if len(args) == 1:
arg = args[0]
expr = sympy.matrices.GramSchmidt([arg.col(i) for i in range(arg.cols)], True)
else:
expr = sympy.matrices.GramSchmidt(args, True)
elif name in ["gcd", "lcm"]:
expr = handle_gcd_lcm(name, args)
elif name in ["max", "min"]:
name = name[0].upper() + name[1:]
expr = getattr(sympy.functions, name)(*args, evaluate=False)
func_pow = None
should_pow = True
if func.supexpr():
if func.supexpr().expr():
func_pow = convert_expr(func.supexpr().expr())
else:
func_pow = convert_atom(func.supexpr().atom())
if func_pow and should_pow:
expr = sympy.Pow(expr, func_pow, evaluate=False)
return expr
elif func.atom_expr_no_supexpr():
# define a function
f = sympy.Function(func.atom_expr_no_supexpr().getText())
# args
args = func.func_common_args().getText().split(",")
if args[-1] == '':
args = args[:-1]
args = [latex2sympy(arg, VARIABLE_VALUES) for arg in args]
# supexpr
if func.supexpr():
if func.supexpr().expr():
expr = convert_expr(func.supexpr().expr())
else:
expr = convert_atom(func.supexpr().atom())
return sympy.Pow(f(*args), expr, evaluate=False)
else:
return f(*args)
elif func.FUNC_INT():
return handle_integral(func)
elif func.FUNC_SQRT():
expr = convert_expr(func.base)
if func.root:
r = convert_expr(func.root)
return sympy.Pow(expr, 1 / r, evaluate=False)
else:
return sympy.Pow(expr, sympy.S.Half, evaluate=False)
elif func.FUNC_SUM():
return handle_sum_or_prod(func, "summation")
elif func.FUNC_PROD():
return handle_sum_or_prod(func, "product")
elif func.FUNC_LIM():
return handle_limit(func)
elif func.EXP_E():
return handle_exp(func)
def convert_func_arg(arg):
if hasattr(arg, 'expr'):
return convert_expr(arg.expr())
else:
return convert_mp(arg.mp_nofunc())
def handle_integral(func):
if func.additive():
integrand = convert_add(func.additive())
elif func.frac():
integrand = convert_frac(func.frac())
else:
integrand = 1
int_var = None
if func.DIFFERENTIAL():
int_var = get_differential_var(func.DIFFERENTIAL())
else:
for sym in integrand.atoms(sympy.Symbol):
s = str(sym)
if len(s) > 1 and s[0] == 'd':
if s[1] == '\\':
int_var = sympy.Symbol(s[2:], real=is_real)
else:
int_var = sympy.Symbol(s[1:], real=is_real)
int_sym = sym
if int_var:
integrand = integrand.subs(int_sym, 1)
else:
# Assume dx by default
int_var = sympy.Symbol('x', real=is_real)
if func.subexpr():
if func.subexpr().atom():
lower = convert_atom(func.subexpr().atom())
else:
lower = convert_expr(func.subexpr().expr())
if func.supexpr().atom():
upper = convert_atom(func.supexpr().atom())
else:
upper = convert_expr(func.supexpr().expr())
return sympy.Integral(integrand, (int_var, lower, upper))
else:
return sympy.Integral(integrand, int_var)
def handle_sum_or_prod(func, name):
val = convert_mp(func.mp())
iter_var = convert_expr(func.subeq().equality().expr(0))
start = convert_expr(func.subeq().equality().expr(1))
if func.supexpr().expr(): # ^{expr}
end = convert_expr(func.supexpr().expr())
else: # ^atom
end = convert_atom(func.supexpr().atom())
if name == "summation":
return sympy.Sum(val, (iter_var, start, end))
elif name == "product":
return sympy.Product(val, (iter_var, start, end))
def handle_limit(func):
sub = func.limit_sub()
if sub.LETTER_NO_E():
var = sympy.Symbol(sub.LETTER_NO_E().getText(), real=is_real)
elif sub.GREEK_CMD():
var = sympy.Symbol(sub.GREEK_CMD().getText()[1:].strip(), real=is_real)
elif sub.OTHER_SYMBOL_CMD():
var = sympy.Symbol(sub.OTHER_SYMBOL_CMD().getText().strip(), real=is_real)
else:
var = sympy.Symbol('x', real=is_real)
if sub.SUB():
direction = "-"
else:
direction = "+"
approaching = convert_expr(sub.expr())
content = convert_mp(func.mp())
return sympy.Limit(content, var, approaching, direction)
def handle_exp(func):
if func.supexpr():
if func.supexpr().expr(): # ^{expr}
exp_arg = convert_expr(func.supexpr().expr())
else: # ^atom
exp_arg = convert_atom(func.supexpr().atom())
else:
exp_arg = 1
return sympy.exp(exp_arg)
def handle_gcd_lcm(f, args):
"""
Return the result of gcd() or lcm(), as UnevaluatedExpr
f: str - name of function ("gcd" or "lcm")
args: List[Expr] - list of function arguments
"""
args = tuple(map(sympy.nsimplify, args))
# gcd() and lcm() don't support evaluate=False
return sympy.UnevaluatedExpr(getattr(sympy, f)(args))
def handle_floor(expr):
"""
Apply floor() then return the floored expression.
expr: Expr - sympy expression as an argument to floor()
"""
return sympy.functions.floor(expr, evaluate=False)
def handle_ceil(expr):
"""
Apply ceil() then return the ceil-ed expression.
expr: Expr - sympy expression as an argument to ceil()
"""
return sympy.functions.ceiling(expr, evaluate=False)
def get_differential_var(d):
text = get_differential_var_str(d.getText())
return sympy.Symbol(text, real=is_real)
def get_differential_var_str(text):
for i in range(1, len(text)):
c = text[i]
if not (c == " " or c == "\r" or c == "\n" or c == "\t"):
idx = i
break
text = text[idx:]
if text[0] == "\\":
text = text[1:]
return text
def latex(tex):
global frac_type
result = sympy.latex(tex)
result = result.replace(r'\frac', frac_type, -1).replace(r'\dfrac', frac_type, -1).replace(r'\tfrac', frac_type, -1)
result = result.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
result = result.replace(r'\left', r'', -1).replace(r'\right', r'', -1)
result = result.replace(r' )', r')', -1)
result = result.replace(r'\log', r'\ln', -1)
return result
def latex2latex(tex):
result = latex2sympy(tex)
# if result is a list or tuple or dict
if isinstance(result, list) or isinstance(result, tuple) or isinstance(result, dict):
return latex(result)
else:
return latex(simplify(result.subs(variances).doit().doit()))
# Set image value
latex2latex('i=I')
latex2latex('j=I')
# set Identity(i)
for i in range(1, 10):
lh = sympy.Symbol(r'\bm{I}_' + str(i), real=False)
lh_m = sympy.MatrixSymbol(r'\bm{I}_' + str(i), i, i)
rh = sympy.Identity(i).as_mutable()
variances[lh] = rh
variances[lh_m] = rh
var[str(lh)] = rh
if __name__ == '__main__':
# latex2latex(r'A_1=\begin{bmatrix}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{bmatrix}')
# latex2latex(r'b_1=\begin{bmatrix}1 \\ 2 \\ 3 \\ 4\end{bmatrix}')
# tex = r"(x+2)|_{x=y+1}"
# tex = r"\operatorname{zeros}(3)"
tex = r"\operatorname{rows}(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix})"
# print("latex2latex:", latex2latex(tex))
math = latex2sympy(tex)
# math = math.subs(variances)
print("latex:", tex)
# print("var:", variances)
print("raw_math:", math)
# print("math:", latex(math.doit()))
# print("math_type:", type(math.doit()))
# print("shape:", (math.doit()).shape)
print("cal:", latex2latex(tex))
|