File size: 25,587 Bytes
24c2665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/tasks/hendrycks_math/utils.py
import re
from collections import Counter
from typing import Tuple, List, Dict
from lxml import etree
from math_verify import parse, verify
from reason_rl.rewards.evalplus_wrapper import evaluate_sample
from reason_rl.rewards.math_utils import grade_answer_mathd, grade_answer_sympy
def choice_answer_clean(pred: str):
"""https://github.com/hkust-nlp/simpleRL-reason/blob/main/eval/grader.py"""
pred = pred.strip("\n").rstrip(".").rstrip("/").strip(" ").lstrip(":")
# Clean the answer based on the dataset
tmp = re.findall(r"\b(A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z)\b", pred.upper())
if tmp:
pred = tmp
else:
pred = [pred.strip().strip(".")]
pred = pred[-1]
# Remove the period at the end, again!
pred = pred.rstrip(".").rstrip("/")
return pred
def extract_code(completion: str, language: str = "python") -> str:
pattern = re.compile(rf"```{language}\n(.*?)```", re.DOTALL)
matches = pattern.findall(completion)
extracted_answer = matches[-1] if len(matches) >= 1 else ""
return extracted_answer
def get_gt_reward(solution_str: str, ground_truth: str, extraction_type: str, metric: str, math_metric: str = 'deepscaler') -> float:
answer = extract_answer(solution_str, extraction_type)
if metric == 'mc':
mc_answer = choice_answer_clean(answer)
if mc_answer == ground_truth:
return 1.0
if grade_answer_sympy(answer, ground_truth) or grade_answer_mathd(answer, ground_truth):
return 1.0
return 0.0
elif metric == 'math':
if math_metric == 'math_verify':
gold = parse('\\boxed{' + ground_truth + '}')
answer = parse('\\boxed{' + answer + '}')
return 1.0 if verify(gold, answer) else 0.0
elif math_metric == 'deepscaler':
if grade_answer_sympy(answer, ground_truth) or grade_answer_mathd(answer, ground_truth):
return 1.0
return 0.0
elif math_metric == 'union':
math_verify_gold = parse('\\boxed{' + ground_truth + '}')
math_verify_answer = parse('\\boxed{' + answer + '}')
if grade_answer_sympy(answer, ground_truth) or grade_answer_mathd(answer, ground_truth) or verify(math_verify_gold, math_verify_answer):
return 1.0
return 0.0
else:
raise ValueError(f"Invalid math metric: {math_metric}")
elif metric == 'code_eval':
try:
answer = eval(answer.strip())
except Exception:
return 0.0
ground_truth = eval(ground_truth.strip())
if answer == ground_truth:
return 1.0
return 0.0
elif metric == 'evalplus':
pattern = re.compile(rf"```python\n(.*?)```", re.DOTALL)
matches = pattern.findall(answer)
extracted_answer = matches[-1] if len(matches) >= 1 else answer
return evaluate_sample(**ground_truth, solution=extracted_answer)['base_passed'] * 1.0
elif metric == 'openr1':
return 0.0 # placeholder
elif metric == 'em':
if answer.lower().strip() == ground_truth.lower().strip():
return 1.0
return 0.0
# we need all indices in the answer list to be in the ground truth
elif metric == 'bon':
try:
answer_list = eval(answer.strip())
except Exception: # not a valid python object
return 0.0
ground_truth = eval(ground_truth.strip())
if isinstance(answer_list, list) or isinstance(answer_list, set) or isinstance(answer_list, tuple):
# convert to list
answer_list = list(answer_list)
answer_list = [a for a in answer_list if a] # remove empty strings, empty lists, etc.
for i, a in enumerate(answer_list):
if isinstance(a, str):
try:
answer_list[i] = int(a)
except Exception:
return 0.0
if isinstance(a, list):
if len(a) > 1:
return 0.0
elif len(a) == 1:
answer_list[i] = a[0]
if isinstance(answer_list[i], str):
try:
answer_list[i] = int(answer_list[i])
except Exception:
return 0.0
else:
return 0.0
# Special cases
if len(answer_list) == 0 and len(ground_truth) == 0:
return 1.0
if len(answer_list) == 0 and len(ground_truth) != 0:
return 0.0
try:
# Convert to sets
answer_set = set(answer_list)
ground_truth_set = set(ground_truth)
# Calculate intersection of correct answers
correct_answers = answer_set.intersection(ground_truth_set)
# If no correct answers found, return 0
if len(correct_answers) == 0:
return 0.0
# Base score for getting at least one right (e.g., 0.5)
base_score = 0.5
# Bonus score based on proportion of remaining correct answers
if len(ground_truth_set) > 1:
bonus_proportion = (len(correct_answers) - 1) / (len(ground_truth_set) - 1)
bonus_score = (1.0 - base_score) * bonus_proportion
else:
bonus_score = 1.0 - base_score
# Combine base score and bonus
return base_score + bonus_score
except Exception:
raise ValueError(f"Invalid answer: {answer}")
else: # not a list, set, or tuple
return 0.0
# string matching
elif metric == 'judge':
assert isinstance(eval(ground_truth), bool)
if bool(eval(ground_truth)):
if answer.strip().lower() in ['correct', "'correct'", '"correct"', 'yes', 'true', '1', 'y', 't', 'right', 'valid', 'accurate', 'ok', 'okay', 'yep', 'yeah', 'indeed', 'affirmative', 'correct answer', 'solution is correct', 'is correct']:
return 1.0
return 0.0
else: # false
if answer.strip().lower() in ['incorrect', "'incorrect'", '"incorrect"', 'no', 'false', '0', 'n', 'f', 'wrong', 'invalid', 'inaccurate', 'nope', 'nah', 'negative', 'not correct', 'not right', 'solution is incorrect', 'solution is wrong', 'is incorrect', 'is not correct']:
return 1.0
return 0.0
else:
raise ValueError(f"Invalid metric: {metric}")
def extract_answer(solution_str: str, extraction_type: str) -> str:
if extraction_type.startswith('answer') or extraction_type.startswith('kwai') or extraction_type.startswith('skillset'):
if "<answer>" in solution_str:
answer = solution_str.split("<answer>")[-1].split("</answer>")[0]
else:
return ''
# Strip LaTeX math delimiters and whitespace
answer = answer.strip()
return answer
elif extraction_type.startswith('boxed'):
answer = last_boxed_only_string(solution_str)
return answer.strip() if answer is not None else ''
else:
raise ValueError(f"Invalid extraction type: {extraction_type}")
def extract_thought(solution_str: str) -> str:
if "<think>" in solution_str:
return solution_str.split("<think>")[-1].split("</think>")[0]
else:
return ''
def validate_tags(text) -> tuple[bool, dict]:
"""
Validates that the entire string is composed solely of properly nested HTML-like tags,
allowing any whitespace (spaces, tabs, newlines) between tags or at the boundaries.
Returns a count of the outer (top-level) tags only. Non-whitespace text outside of tags
will cause validation to fail.
Examples:
- "<a>content</a >" returns (True, {"a": 1})
- "<a><b>Nested</b></a >" returns (True, {"a": 1})
(the inner 'b' tag is not counted as an outer tag)
- "<div>Hello</div><p>World</p >" returns (True, {"div": 1, "p": 1})
- "<a>Text</a > extra" returns (False, {})
- " <a>Text</a >\n\t<b>More</b> " returns (True, {"a": 1, "b": 1})
Args:
text (str): The text containing the tags to validate.
Returns:
tuple: A tuple (is_valid, tag_counts) where is_valid is a boolean indicating
if the text is valid and tag_counts is a dict with counts of outer tags.
"""
# This pattern matches both opening and closing tags with a name consisting of letters and underscores only.
tag_pattern = re.compile(r"</?([a-zA-Z_]+)>")
pos = 0 # Current position in the string.
stack = [] # Stack to keep track of nested open tags.
outer_counts = Counter() # Counter for outer (top-level) tags.
# Iterate over every tag in the string.
for match in tag_pattern.finditer(text):
# At the outer level, allow whitespace between tags.
if not stack:
# If the text from the previous position to the current tag is non-empty after stripping,
# then there is extra non-whitespace text.
if text[pos:match.start()].strip() != "":
return False, {}
tag = match.group(0)
tag_name = match.group(1)
if tag.startswith("</"): # This is a closing tag.
if not stack or stack[-1] != tag_name:
# Either no corresponding open tag, or the tag names do not match.
return False, {}
stack.pop()
else: # This is an opening tag.
if not stack:
# This opening tag is at the outer (top-level).
outer_counts[tag_name] += 1
stack.append(tag_name)
# Update the current position to the end of the current tag.
pos = match.end()
# After processing all tags:
# 1. Any trailing text (outside of tags) must be whitespace only.
# 2. All tags should have been closed (stack is empty).
if text[pos:].strip() != "" or stack:
return False, {}
try:
xml_string = f'<root>{text}</root>'
etree.fromstring(xml_string)
except Exception:
return False, {}
return True, dict(outer_counts)
def count_nested_html(input_string):
pattern = re.compile(r'<(/?)(\w+)\s*>')
stack = [] # Stores tuples of (tag_name, was_nested_when_opened)
nested_count = 0
for match in pattern.finditer(input_string):
is_closing, tag_name = match.groups()
if not is_closing:
# Record if this tag was opened within another tag
was_nested = len(stack) > 0
stack.append((tag_name, was_nested))
else:
# Search for matching opening tag
found_index = -1
for i in reversed(range(len(stack))):
if stack[i][0] == tag_name:
found_index = i
break
if found_index != -1:
# Only count if the tag was originally nested when opened
if stack[found_index][1]:
nested_count += 1
# Remove all elements from found_index onward
del stack[found_index:]
return nested_count
def get_format_reward(
solution_str: str,
extraction_type: str,
available_options: List[str] = None,
) -> float:
if extraction_type.startswith('answer'):
pattern = r"(?s)<think>.*?</think>\s*<answer>.*?</answer>"
matched = re.match(pattern, solution_str)
if matched:
return 1.
else:
return 0.
elif extraction_type.startswith('boxed'):
if last_boxed_only_string(solution_str) is not None:
return 1.
else:
return 0.
elif extraction_type.startswith('kwai') or extraction_type.startswith('skillset'):
valid, tag_counts = validate_tags(solution_str)
if available_options is not None:
for tag in tag_counts.keys():
if tag not in available_options:
valid = False
if extraction_type.startswith('kwai_vanilla') or extraction_type.startswith('skillset_vanilla'):
return 1. if valid else 0.
elif extraction_type.startswith('kwai_count') or extraction_type.startswith('skillset_count'):
if not valid:
return 0.
return min(0.3 + sum([v for k, v in tag_counts.items() if k != 'answer']) * 0.02, 0.6)
elif extraction_type.startswith('kwai_distinct_count') or extraction_type.startswith('skillset_distinct_count'):
if not valid:
return 0.
return min(0.3 + sum([1 for k, v in tag_counts.items() if k != 'answer' and v > 0]) * 0.06, 0.6)
else:
raise ValueError(f"Invalid extraction type: {extraction_type}")
else:
raise ValueError(f"Invalid extraction type: {extraction_type}")
def extract_code_content(solution_str):
# Check if the string starts with an XML code block
xml_pattern = r'^```\s*xml\n(.*?)```'
xml_match = re.match(xml_pattern, solution_str, re.DOTALL | re.IGNORECASE)
if xml_match:
# XML code block found at start
return xml_match.group(1).strip()
# Check if the string starts with any code block
generic_pattern = r'^```\s*\w*\n(.*?)```'
generic_match = re.match(generic_pattern, solution_str, re.DOTALL)
if generic_match:
# Some other code block found at start
return generic_match.group(1).strip()
# No code block found at start, return the original string
return solution_str.strip()
def get_reward(
solution_str: str,
ground_truth: str,
extra_info: dict,
extraction_type: str,
splitter: str,
math_metric: str = 'deepscaler',
available_options: List[str] = None,
) -> Tuple[float, Dict[str, float]]:
solution_str = solution_str.split(splitter)[1].strip()
# sometimes model starts with code block for kwai and skillset
if extraction_type.startswith('kwai') or extraction_type.startswith('skillset'):
solution_str = extract_code_content(solution_str)
solution_str = solution_str.strip('\"\'')
gt_reward = get_gt_reward(solution_str, ground_truth, extraction_type, extra_info['metric'], math_metric)
format_reward = get_format_reward(solution_str, extraction_type, available_options)
if extra_info['split'] == 'train':
if extraction_type.startswith('kwai') or extraction_type.startswith('skillset'):
if extraction_type.endswith('additon'):
return gt_reward + format_reward, {'gt': gt_reward, 'format': format_reward}
elif extraction_type.endswith('multiply'):
return gt_reward * format_reward, {'gt': gt_reward, 'format': format_reward}
elif extraction_type.endswith('conditional'):
return gt_reward if format_reward else 0., {'gt': gt_reward, 'format': format_reward}
elif extraction_type.endswith('conditional_v2'):
# R(answer) =
# 1 if correct formatting and correct answer
# -0.5 if correct formatting and incorrect answer
# -1 if incorrect formatting
if not format_reward:
return -1., {'gt': gt_reward, 'format': format_reward}
else:
return 1. if gt_reward else -0.5, {'gt': gt_reward, 'format': format_reward}
else:
raise ValueError(f"Invalid extraction type: {extraction_type}")
elif extraction_type.startswith('answer') or extraction_type.startswith('boxed'):
if extraction_type.endswith('conditional'):
# R(answer) =
# 1 if correct formatting and correct answer
# -0.5 if correct formatting and incorrect answer
# -1 if incorrect formatting
if not format_reward:
return -1., {'gt': gt_reward, 'format': format_reward}
# correct formatting
else:
return 1. if gt_reward else -0.5, {'gt': gt_reward, 'format': format_reward}
elif extraction_type.endswith('addition'):
return (0.5 if format_reward else 0.) + gt_reward, {'gt': gt_reward, 'format': format_reward}
elif extraction_type.endswith('multiply'):
return format_reward * gt_reward, {'gt': gt_reward, 'format': format_reward}
else:
raise ValueError(f"Invalid extraction type: {extraction_type}")
elif extra_info['split'] == 'test':
return gt_reward, {'gt': gt_reward, 'format': format_reward}
else:
raise ValueError(f"Invalid split: {extra_info['split']}")
# string normalization from https://github.com/EleutherAI/lm-evaluation-harness/blob/master/lm_eval/tasks/hendrycks_math.py
def is_equiv(str1: str, str2: str, verbose: bool = False) -> bool:
if str1 is None and str2 is None:
print("WARNING: Both None")
return True
if str1 is None or str2 is None:
return False
try:
ss1 = strip_string(str1)
ss2 = strip_string(str2)
if verbose:
print(ss1, ss2)
return ss1 == ss2
except Exception:
return str1 == str2
def remove_boxed(s: str) -> str:
if "\\boxed " in s:
left = "\\boxed "
assert s[:len(left)] == left
return s[len(left):]
left = "\\boxed{"
assert s[:len(left)] == left
assert s[-1] == "}"
return s[len(left):-1]
def last_boxed_only_string(string: str) -> str:
idx = string.rfind("\\boxed")
if "\\boxed " in string:
return "\\boxed " + string.split("\\boxed ")[-1].split("$")[0]
if idx < 0:
idx = string.rfind("\\fbox")
if idx < 0:
return None
i = idx
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == "{":
num_left_braces_open += 1
if string[i] == "}":
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if right_brace_idx is None:
retval = None
else:
retval = string[idx:right_brace_idx + 1]
return retval
def fix_fracs(string: str) -> str:
substrs = string.split("\\frac")
new_str = substrs[0]
if len(substrs) > 1:
substrs = substrs[1:]
for substr in substrs:
new_str += "\\frac"
if substr[0] == "{":
new_str += substr
else:
try:
assert len(substr) >= 2
except AssertionError:
return string
a = substr[0]
b = substr[1]
if b != "{":
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}{" + b + "}" + post_substr
else:
new_str += "{" + a + "}{" + b + "}"
else:
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}" + b + post_substr
else:
new_str += "{" + a + "}" + b
string = new_str
return string
def fix_a_slash_b(string: str) -> str:
if len(string.split("/")) != 2:
return string
a = string.split("/")[0]
b = string.split("/")[1]
try:
a = int(a)
b = int(b)
assert string == "{}/{}".format(a, b)
new_string = "\\frac{" + str(a) + "}{" + str(b) + "}"
return new_string
except AssertionError:
return string
def remove_right_units(string: str) -> str:
# "\\text{ " only ever occurs (at least in the val set) when describing units
if "\\text{ " in string:
splits = string.split("\\text{ ")
assert len(splits) == 2
return splits[0]
else:
return string
def fix_sqrt(string: str) -> str:
if "\\sqrt" not in string:
return string
splits = string.split("\\sqrt")
new_string = splits[0]
for split in splits[1:]:
if split[0] != "{":
a = split[0]
new_substr = "\\sqrt{" + a + "}" + split[1:]
else:
new_substr = "\\sqrt" + split
new_string += new_substr
return new_string
def strip_string(string: str) -> str:
# linebreaks
string = string.replace("\n", "")
# remove inverse spaces
string = string.replace("\\!", "")
# replace \\ with \
string = string.replace("\\\\", "\\")
# replace tfrac and dfrac with frac
string = string.replace("tfrac", "frac")
string = string.replace("dfrac", "frac")
# remove \left and \right
string = string.replace("\\left", "")
string = string.replace("\\right", "")
# Remove circ (degrees)
string = string.replace("^{\\circ}", "")
string = string.replace("^\\circ", "")
# remove dollar signs
string = string.replace("\\$", "")
# remove units (on the right)
string = remove_right_units(string)
# remove percentage
string = string.replace("\\%", "")
string = string.replace("\%", "") # noqa: W605
# " 0." equivalent to " ." and "{0." equivalent to "{." Alternatively, add "0" if "." is the start of the string
string = string.replace(" .", " 0.")
string = string.replace("{.", "{0.")
# if empty, return empty string
if len(string) == 0:
return string
if string[0] == ".":
string = "0" + string
# to consider: get rid of e.g. "k = " or "q = " at beginning
if len(string.split("=")) == 2:
if len(string.split("=")[0]) <= 2:
string = string.split("=")[1]
# fix sqrt3 --> sqrt{3}
string = fix_sqrt(string)
# remove spaces
string = string.replace(" ", "")
# \frac1b or \frac12 --> \frac{1}{b} and \frac{1}{2}, etc. Even works with \frac1{72} (but not \frac{72}1). Also does a/b --> \\frac{a}{b}
string = fix_fracs(string)
# manually change 0.5 --> \frac{1}{2}
if string == "0.5":
string = "\\frac{1}{2}"
# NOTE: X/Y changed to \frac{X}{Y} in dataset, but in simple cases fix in case the model output is X/Y
string = fix_a_slash_b(string)
return string
def get_repetition_penalty_reward(ngram_size: int, max_penalty: float):
"""
https://github.com/huggingface/open-r1
Computes N-gram repetition penalty as described in Appendix C.2 of https://arxiv.org/abs/2502.03373.
Reference implementation from: https://github.com/eddycmu/demystify-long-cot/blob/release/openrlhf/openrlhf/reward/repetition.py
Args:
ngram_size: size of the n-grams
max_penalty: Maximum (negative) penalty for wrong answers
"""
if max_penalty > 0:
raise ValueError(f"max_penalty {max_penalty} should not be positive")
def zipngram(text: str, ngram_size: int):
words = text.lower().split()
return zip(*[words[i:] for i in range(ngram_size)])
def repetition_penalty_reward(response: str, **kwargs) -> float:
"""
reward function the penalizes repetitions
ref implementation: https://github.com/eddycmu/demystify-long-cot/blob/release/openrlhf/openrlhf/reward/repetition.py
Args:
completions: List of model completions
"""
if response == "":
return 0.0
if len(response.split()) < ngram_size:
return 0.0
ngrams = set()
total = 0
for ng in zipngram(response, ngram_size):
ngrams.add(ng)
total += 1
scaling = 1 - len(ngrams) / total
reward = scaling * max_penalty
return reward
return repetition_penalty_reward
if __name__ == "__main__":
generation = """<think> To find the sum of the polynomials f(y) and g(y), we need to add the corresponding terms of each polynomial. The polynomials are:
f(y) = y^4 - 3y^3 + y - 3
g(y) = y^3 + 7y^2 - 2
Now, let's add the corresponding terms:
y^4 (from f(y)) + 0 (from g(y)) = y^4
-3y^3 (from f(y)) + y^3 (from g(y)) = -2y^3
0 (from f(y)) + 7y^2 (from g(y)) = 7y^2
y (from f(y)) + 0 (from g(y)) = y
-3 (from f(y)) - 2 (from g(y)) = -5
So, the sum of the polynomials f(y) and g(y) is:
f(y) + g(y) = y^4 - 2y^3 + 7y^2 + y - 5
</think> <answer> y^4 - 2y^3 + 7y^2 + y - 5 </answer><|endoftext|>"""
print(get_gt_reward(generation, "y^4-2y^3+7y^2+y-5"))
|