File size: 99,086 Bytes
24c2665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
#!/usr/bin/env python3
"""
Batch TestTime RLVR Evaluation Script

벤치마크 전체에 대하여 TestTime RLVR 파이프라인을 실행하고
초기 솔루션 정확성 및 reasoning tasks 성능을 평가합니다.
"""

import os
import sys
import json
import argparse
import time
import re
from pathlib import Path
from datetime import datetime
from typing import Dict, List, Any
import traceback

# TestTime RLVR 모듈 임포트
sys.path.append('/home/ubuntu/RLVR/TestTime-RLVR-v2')
from absolute_zero_reasoner.testtime.complete_pipeline import CompleteTestTimePipeline
from absolute_zero_reasoner.testtime.config import TestTimeConfig, BenchmarkConfig
from absolute_zero_reasoner.testtime.logger import TestTimeLogger
from absolute_zero_reasoner.testtime.solution_generator import InitialSolutionGenerator
from absolute_zero_reasoner.testtime.prompts import get_prompt, get_diversity_instruction


def generate_detailed_classification(output_dir: str, benchmark: str) -> str:
    """배치 평가 결과를 4가지 카테고리로 상세 분류"""
    
    base_dir = os.path.join(output_dir, benchmark)
    
    if not os.path.exists(base_dir):
        return f"## 📊 Detailed Problem Classification\n\n⚠️ Benchmark directory not found: {base_dir}\n\n"
    
    # 4가지 카테고리
    complete_success = []      # 100% 성공
    partial_success = []       # 부분 성공 (success rate와 함께)
    complete_failure = []      # 0% 실패
    execution_failure = []     # 실행 실패 (division by zero 등)
    
    # 모든 problem 디렉토리 탐색
    for problem_dir in sorted(Path(base_dir).iterdir()):
        if not problem_dir.is_dir():
            continue
        
        problem_id = problem_dir.name
        # current_evaluation 디렉토리 확인 (baseline evaluation 기준)
        current_eval_file = problem_dir / "current_evaluation" / "attempt_1.txt"
        
        if not current_eval_file.exists():
            execution_failure.append(f"{problem_id} (file not found)")
            continue
        
        # 파일에서 결과 추출
        try:
            with open(current_eval_file, 'r', encoding='utf-8') as f:
                content = f.read()
            
            # Result 라인 찾기
            result_pattern = r'Result: (.+) \((\d+)/(\d+) tests passed\)'
            match = re.search(result_pattern, content)
            
            if match:
                status = match.group(1)
                passed = int(match.group(2))
                total = int(match.group(3))
                
                if total == 0:
                    execution_failure.append(f"{problem_id} (0 total tests)")
                elif passed == total:
                    complete_success.append(problem_id)
                elif passed == 0:
                    complete_failure.append(problem_id)
                else:
                    ratio = passed / total * 100
                    partial_success.append((problem_id, passed, total, ratio))
            else:
                execution_failure.append(f"{problem_id} (no result pattern)")
                
        except Exception as e:
            if "division by zero" in str(e):
                execution_failure.append(f"{problem_id} (division by zero)")
            else:
                execution_failure.append(f"{problem_id} (error: {str(e)[:50]})")
    
    # Partial Success를 성공률 낮은 순서로 정렬
    partial_success.sort(key=lambda x: x[3])  # ratio로 정렬
    
    # Markdown 형식으로 결과 생성
    result = "## 📊 Detailed Problem Classification\n\n"
    
    result += f"### 🟢 Complete Success (Baseline = 100%)\n"
    result += f"**Count: {len(complete_success)} problems**\n"
    result += "**Task IDs:**\n"
    # 10개씩 한 줄에 출력
    for i in range(0, len(complete_success), 10):
        line_tasks = complete_success[i:i+10]
        result += "- " + ", ".join(line_tasks) + "\n"
    result += "\n"
    
    result += f"### 🟡 Partial Success (0% < Baseline < 100%)\n"
    result += f"**Count: {len(partial_success)} problems**\n"
    result += "**Task IDs (ordered by success rate, lowest first):**\n"
    for problem_id, passed, total, ratio in partial_success:
        result += f"- {problem_id}: {passed}/{total} ({ratio:.1f}%)\n"
    result += "\n"
    
    result += f"### 🔴 Complete Failure (Baseline = 0%)\n"
    result += f"**Count: {len(complete_failure)} problems**\n"
    result += "**Task IDs:**\n"
    # 10개씩 한 줄에 출력
    for i in range(0, len(complete_failure), 10):
        line_tasks = complete_failure[i:i+10]
        result += "- " + ", ".join(line_tasks) + "\n"
    result += "\n"
    
    result += f"### ❌ Execution Failure (Syntax/Import/Runtime Errors)\n"
    result += f"**Count: {len(execution_failure)} problems**\n"
    result += "**Task IDs:**\n"
    for task in execution_failure:
        result += f"- {task}\n"
    result += "\n"
    
    result += f"### 📈 Summary Statistics\n"
    total_analyzed = len(complete_success) + len(partial_success) + len(complete_failure) + len(execution_failure)
    if total_analyzed > 0:
        result += f"- Total Problems with Results: {total_analyzed}\n"
        result += f"- Baseline Success Rate: {len(complete_success)/total_analyzed*100:.1f}%\n"
        result += f"- Partial Success Rate: {len(partial_success)/total_analyzed*100:.1f}%\n"
        result += f"- Complete Failure Rate: {len(complete_failure)/total_analyzed*100:.1f}%\n"
        result += f"- Execution Failure Rate: {len(execution_failure)/total_analyzed*100:.1f}%\n"
        result += f"\n**Note**: This analysis is based on baseline evaluation (attempt_1.txt) results.\n"
        result += f"Problems that failed during early pipeline stages may not appear in these statistics.\n"
    result += "\n"
    
    return result


def load_benchmark_problems(benchmark_config: BenchmarkConfig) -> List[str]:
    """벤치마크에서 문제 ID 목록 로드 (EvalPlus 표준 방식 사용)"""
    
    problems = []
    
    if benchmark_config.name == 'mbpp':
        # MBPP+ EvalPlus 표준 데이터 로딩
        try:
            from evalplus.data.mbpp import get_mbpp_plus
            mbpp_problems = get_mbpp_plus()  # 자동으로 mbpp_deserialize_inputs 적용됨
            problems = list(mbpp_problems.keys())
            print(f"✅ MBPP+ 데이터 로드 성공: {len(problems)}개 문제 (EvalPlus 표준 방식)")
        except Exception as e:
            print(f"❌ MBPP+ EvalPlus 로딩 실패, 기존 방식 사용: {e}")
            # Fallback to original method
            data_path = benchmark_config.data_path
            if os.path.exists(data_path):
                with open(data_path, 'r') as f:
                    for line in f:
                        try:
                            data = json.loads(line.strip())
                            if 'task_id' in data:
                                problems.append(data['task_id'])
                        except:
                            continue
    
    elif benchmark_config.name == 'humaneval':
        # HumanEval+ EvalPlus 표준 데이터 로딩
        try:
            from evalplus.data.humaneval import get_human_eval_plus
            humaneval_problems = get_human_eval_plus()  # EvalPlus 표준 방식
            problems = list(humaneval_problems.keys())
            print(f"✅ HumanEval+ 데이터 로드 성공: {len(problems)}개 문제 (EvalPlus 표준 방식)")
        except Exception as e:
            print(f"❌ HumanEval+ EvalPlus 로딩 실패, 기존 방식 사용: {e}")
            # Fallback to original method
            data_path = benchmark_config.data_path
            if os.path.exists(data_path):
                with open(data_path, 'r') as f:
                    for line in f:
                        try:
                            data = json.loads(line.strip())
                            if 'task_id' in data:
                                problems.append(data['task_id'])
                        except:
                            continue
    
    return problems


def get_completed_problems(output_dir: str) -> set:
    """완료된 문제 ID 목록 로드 (resume 기능용)"""
    completed = set()
    
    # 기존 JSON 결과 파일에서 완료된 문제들 추출
    json_file = os.path.join(output_dir, "batch_evaluation_results.json")
    if os.path.exists(json_file):
        try:
            with open(json_file, 'r', encoding='utf-8') as f:
                data = json.load(f)
                for result in data.get('problem_results', []):
                    problem_id = result.get('problem_id')
                    if problem_id:
                        completed.add(problem_id)
        except Exception as e:
            print(f"⚠️  Warning: Could not load existing results: {e}")
    
    return completed


def save_initial_solution_only(result, output_dir, timestamp, problem_id):
    """LLM Generation 성공시 initial_solution만 저장"""
    
    # 벤치마크와 문제 ID에 따른 디렉토리 구조 생성
    benchmark = result.get('benchmark', 'unknown')
    problem_id_safe = problem_id.replace('/', '_')
    
    # {output_dir}/{benchmark}/{problem_id} 구조로 디렉토리 생성
    base_dir = os.path.join(output_dir, benchmark, problem_id_safe)
    os.makedirs(base_dir, exist_ok=True)
    
    # initial_solution 디렉토리 생성
    initial_solution_dir = os.path.join(base_dir, 'initial_solution')
    os.makedirs(initial_solution_dir, exist_ok=True)
    
    # LLM Generation 단계가 있는지 확인
    if 'steps' in result and 'llm_generation' in result['steps']:
        llm_step = result['steps']['llm_generation']
        
        # 벤치마크 문제 원본 저장
        if 'problem_loading' in result['steps']:
            problem_data = result['steps']['problem_loading'].get('problem', {})
            problem_file = os.path.join(initial_solution_dir, f"{problem_id_safe}_original_problem.txt")
            with open(problem_file, 'w', encoding='utf-8') as f:
                f.write(f"Problem ID: {problem_id}\n")
                f.write(f"Benchmark: {benchmark}\n")
                f.write(f"Generated: {timestamp}\n")
                f.write("="*80 + "\n")
                f.write("ORIGINAL BENCHMARK PROBLEM:\n")
                f.write("="*80 + "\n")
                f.write(problem_data.get('prompt', 'No prompt available'))
                f.write("\n" + "="*80 + "\n")
                f.write("FULL LLM PROMPT:\n")
                f.write("="*80 + "\n")
                # solution_generator.py에서 사용하는 전체 프롬프트 재현
                problem_prompt = problem_data.get('prompt', '')
                
                # HumanEval에 대해서는 함수 완성 요청
                if 'HumanEval' in problem_id:
                    full_prompt = f"""You are a Python writing assistant. Complete the following Python function.

{problem_prompt}

Please provide a complete implementation of the function."""
                else:
                    # MBPP와 다른 벤치마크에는 기존 프롬프트 사용
                    full_prompt = f"""
Please generate a complete, self-contained Python script that solves the following problem.  
- Wrap the entire script in a Markdown code block with syntax highlighting (```python ... ```).  
- For each function, include a concise docstring enclosed in triple single quotes (''' ... '''), placed immediately below the def line.  
The docstring should briefly describe:  
• The function's purpose  
• Input parameters  
• Return value  

Problem statement:
{problem_prompt}
"""
                f.write(full_prompt.strip())
                f.write("\n" + "="*80 + "\n")
                f.write("ENTRY POINT:\n")
                f.write("="*80 + "\n")
                f.write(problem_data.get('entry_point', 'No entry point'))
                if 'canonical_solution' in problem_data:
                    f.write("\n" + "="*80 + "\n")
                    f.write("CANONICAL SOLUTION:\n")
                    f.write("="*80 + "\n")
                    f.write(problem_data.get('canonical_solution', ''))
        
        # LLM 생성 솔루션 저장
        llm_solution_file = os.path.join(initial_solution_dir, f"{problem_id_safe}_llm_solution.txt")
        with open(llm_solution_file, 'w', encoding='utf-8') as f:
            f.write(f"Problem ID: {problem_id}\n")
            f.write(f"Benchmark: {benchmark}\n")
            f.write(f"Generated: {timestamp}\n")
            f.write("="*80 + "\n")
            f.write("LLM GENERATED SOLUTION:\n")
            f.write("="*80 + "\n")
            f.write(llm_step.get('solution', 'No solution generated'))
            f.write("\n" + "="*80 + "\n")
            f.write("SYNTAX VALIDATION:\n")
            f.write("="*80 + "\n")
            syntax_valid = llm_step.get('syntax_valid', False)
            f.write(f"Valid: {'✅ YES' if syntax_valid else '❌ NO'}")
            if llm_step.get('syntax_error'):
                f.write(f"\nError: {llm_step['syntax_error']}")
            
            # 초기 솔루션 정확성 평가 결과 추가
            f.write("\n" + "="*80 + "\n")
            f.write("SOLUTION CORRECTNESS EVALUATION:\n")
            f.write("="*80 + "\n")
            
            solution_eval = llm_step.get('solution_evaluation')
            if solution_eval:
                if solution_eval['correct']:
                    f.write(f"Result: ✅ CORRECT ({solution_eval['passed_tests']}/{solution_eval['total_tests']} tests passed)\n")
                else:
                    f.write(f"Result: ❌ INCORRECT ({solution_eval['passed_tests']}/{solution_eval['total_tests']} tests passed)\n")
                
                if solution_eval.get('error'):
                    f.write(f"Error: {solution_eval['error']}\n")
            else:
                f.write("No evaluation performed (syntax error or evaluation failed)\n")


def save_current_evaluation_details(result, base_dir, timestamp):
    """현재 성능 평가 상세 정보 저장 - 각 시도별 개별 파일 생성"""
    
    if 'baseline_evaluation' in result['steps']:
        baseline_step = result['steps']['baseline_evaluation']
        
        # current_evaluation 디렉토리 생성
        current_dir = os.path.join(base_dir, 'current_evaluation')
        os.makedirs(current_dir, exist_ok=True)
        
        # 원본 문제 정보 가져오기
        problem_data = result['steps'].get('problem_loading', {}).get('problem', {})
        problem_id = result['problem_id']
        benchmark = result.get('benchmark', 'unknown')
        
        # 각 라운드별 개별 파일 생성
        solutions = baseline_step.get('solutions', [])
        for solution_result in solutions:
            round_id = solution_result.get('round_id', 0)
            attempt_file = os.path.join(current_dir, f'attempt_{round_id + 1}.txt')
            
            with open(attempt_file, 'w', encoding='utf-8') as f:
                f.write(f"Current Evaluation - Attempt {round_id + 1}\n")
                f.write(f"Problem ID: {problem_id}\n")
                f.write(f"Benchmark: {benchmark}\n")
                f.write(f"Generated: {timestamp}\n")
                f.write("="*80 + "\n\n")
                
                # 1. 원본 문제
                f.write("1. ORIGINAL PROBLEM:\n")
                f.write("="*80 + "\n")
                f.write(problem_data.get('prompt', 'No prompt available'))
                f.write("\n" + "="*80 + "\n\n")
                
                # 2. LLM에 들어가는 스크립트 (프롬프트)
                f.write("2. LLM INPUT SCRIPT (PROMPT):\n")
                f.write("="*80 + "\n")
                problem_prompt = problem_data.get('prompt', '')
                
                # 중앙 프롬프트 시스템 사용
                if 'HumanEval' in problem_id:
                    full_prompt = get_prompt("solution_humaneval_basic", 
                                            problem_prompt=problem_prompt)
                else:
                    full_prompt = get_prompt("solution_mbpp_basic", 
                                            problem_prompt=problem_prompt)
                f.write(full_prompt.strip())
                f.write("\n" + "="*80 + "\n\n")
                
                # 3. LLM의 응답
                f.write("3. LLM RESPONSE:\n")
                f.write("="*80 + "\n")
                f.write(solution_result.get('solution', 'No solution generated'))
                f.write("\n" + "="*80 + "\n\n")
                
                # 4. 정답 여부
                f.write("4. CORRECTNESS EVALUATION:\n")
                f.write("="*80 + "\n")
                
                # 구문 검증
                f.write(f"Syntax Valid: {'✅ YES' if solution_result.get('syntax_valid', False) else '❌ NO'}\n")
                if solution_result.get('syntax_error'):
                    f.write(f"Syntax Error: {solution_result['syntax_error']}\n")
                
                # 정확성 평가
                evaluation = solution_result.get('evaluation')
                if evaluation:
                    if evaluation.get('correct', False):
                        f.write(f"Result: ✅ CORRECT ({evaluation.get('passed_tests', 0)}/{evaluation.get('total_tests', 0)} tests passed)\n")
                    else:
                        f.write(f"Result: ❌ INCORRECT ({evaluation.get('passed_tests', 0)}/{evaluation.get('total_tests', 0)} tests passed)\n")
                    
                    if evaluation.get('error'):
                        f.write(f"Evaluation Error: {evaluation['error']}\n")
                else:
                    f.write("Result: ❌ NO EVALUATION (syntax error or evaluation failed)\n")
                
                f.write("="*80 + "\n")
        
        # 요약 파일도 생성 (전체 통계)
        summary_file = os.path.join(current_dir, 'summary.txt')
        with open(summary_file, 'w', encoding='utf-8') as f:
            f.write(f"Current Evaluation Summary\n")
            f.write(f"Problem ID: {result['problem_id']}\n")
            f.write(f"Generated: {timestamp}\n")
            f.write("="*80 + "\n\n")
            
            # 전체 통계
            f.write("OVERALL STATISTICS:\n")
            f.write("="*80 + "\n")
            f.write(f"Total Attempts: {baseline_step.get('total_rounds', 0)}\n")
            f.write(f"Successful Attempts: {baseline_step.get('success_count', 0)}\n")
            f.write(f"Success Rate: {baseline_step.get('average_accuracy', 0.0):.3f}\n")
            f.write(f"Evaluation Status: {'✅ SUCCESS' if baseline_step.get('success', False) else '❌ FAILED'}\n")
            
            if baseline_step.get('error'):
                f.write(f"Error: {baseline_step['error']}\n")
            
            f.write("\n")
            f.write("Individual attempt files: attempt_1.txt, attempt_2.txt, attempt_3.txt, attempt_4.txt, attempt_5.txt\n")

def save_diverse_programs_details(result, base_dir, timestamp):
    """다양한 프로그램 생성 상세 정보 저장"""
    
    if 'diverse_programs' in result['steps']:
        diverse_step = result['steps']['diverse_programs']
        
        # diverse_programs 디렉토리 생성
        diverse_dir = os.path.join(base_dir, 'diverse_programs')
        os.makedirs(diverse_dir, exist_ok=True)
        
        # 요약 파일 저장
        summary_file = os.path.join(diverse_dir, 'diverse_summary.txt')
        with open(summary_file, 'w', encoding='utf-8') as f:
            f.write(f"Diverse Programs Generation\n")
            f.write(f"Problem ID: {result['problem_id']}\n")
            f.write(f"Generated: {timestamp}\n")
            f.write("="*80 + "\n\n")
            
            # 전체 통계
            f.write("DIVERSE PROGRAMS STATISTICS:\n")
            f.write("="*80 + "\n")
            f.write(f"Total Programs: {diverse_step.get('total_programs', 0)}\n")
            f.write(f"Valid Programs: {diverse_step.get('valid_programs', 0)}\n")
            f.write(f"Total IPO Triples: {diverse_step.get('total_ipo_triples', 0)}\n")
            f.write(f"Generation Status: {'✅ SUCCESS' if diverse_step.get('success', False) else '❌ FAILED'}\n")
            
            if diverse_step.get('error'):
                f.write(f"Error: {diverse_step['error']}\n")
            
            f.write("\n\n")
            
            # 각 프로그램별 상세 결과
            f.write("PROGRAM-BY-PROGRAM RESULTS:\n")
            f.write("="*80 + "\n")
            
            programs = diverse_step.get('programs', [])
            for program_result in programs:
                variation_id = program_result.get('variation_id', 0)
                f.write(f"\nProgram {variation_id + 1}:\n")
                f.write(f"  Syntax Valid: {'✅' if program_result.get('syntax_valid', False) else '❌'}\n")
                
                if program_result.get('syntax_error'):
                    f.write(f"  Syntax Error: {program_result['syntax_error']}\n")
                
                f.write(f"  IPO Triples: {program_result.get('num_ipo_triples', 0)}\n")
                f.write(f"  Generated Inputs: {program_result.get('num_generated_inputs', 0)}\n")
        
        # 각 프로그램별 솔루션 및 IPO 저장
        programs = diverse_step.get('programs', [])
        for program_result in programs:
            variation_id = program_result.get('variation_id', 0)
            
            # 프로그램별 디렉토리 생성
            program_dir = os.path.join(diverse_dir, f'program_{variation_id + 1}')
            os.makedirs(program_dir, exist_ok=True)
            
            # 완전한 상세 정보 저장 (프롬프트 + 솔루션)
            detail_file = os.path.join(program_dir, 'generation_details.txt')
            with open(detail_file, 'w', encoding='utf-8') as f:
                f.write(f"Diverse Program {variation_id + 1} - Generation Details\n")
                f.write(f"Problem ID: {result['problem_id']}\n")
                f.write(f"Generated: {timestamp}\n")
                f.write("="*80 + "\n\n")
                
                # 1. 원본 문제
                problem_data = result['steps'].get('problem_loading', {}).get('problem', {})
                f.write("1. ORIGINAL PROBLEM:\n")
                f.write("="*80 + "\n")
                f.write(problem_data.get('prompt', 'No prompt available'))
                f.write("\n" + "="*80 + "\n\n")
                
                # 2. 다양성 프롬프트 (LLM 입력)
                f.write("2. DIVERSITY PROMPT USED:\n")
                f.write("="*80 + "\n")
                
                # 중앙 프롬프트 시스템 사용
                diversity_instruction = get_diversity_instruction(variation_id)
                problem_prompt = problem_data.get('prompt', '')
                problem_id = result['problem_id']
                
                # HumanEval vs MBPP에 따른 프롬프트 구성
                if 'HumanEval' in problem_id:
                    full_prompt = get_prompt("diverse_humaneval_basic",
                                           diversity_instruction=diversity_instruction,
                                           problem_prompt=problem_prompt)
                else:
                    full_prompt = get_prompt("diverse_mbpp_basic",
                                           diversity_instruction=diversity_instruction,
                                           problem_prompt=problem_prompt)
                f.write(full_prompt.strip())
                f.write("\n" + "="*80 + "\n\n")
                
                # 3. LLM 응답
                f.write("3. LLM RESPONSE:\n")
                f.write("="*80 + "\n")
                f.write(program_result.get('solution', 'No solution generated'))
                f.write("\n" + "="*80 + "\n\n")
                
                # 4. 평가 결과
                f.write("4. EVALUATION RESULTS:\n")
                f.write("="*80 + "\n")
                f.write(f"Syntax Valid: {'✅ YES' if program_result.get('syntax_valid', False) else '❌ NO'}\n")
                if program_result.get('syntax_error'):
                    f.write(f"Syntax Error: {program_result['syntax_error']}\n")
                f.write(f"IPO Triples Generated: {program_result.get('num_ipo_triples', 0)}\n")
                f.write(f"Input Generation: {program_result.get('num_generated_inputs', 0)} new inputs\n")
                f.write("="*80 + "\n")
            
            # 솔루션만 따로 저장 (기존 호환성)
            solution_file = os.path.join(program_dir, 'solution.py')
            with open(solution_file, 'w', encoding='utf-8') as f:
                f.write(f"# Diverse Program {variation_id + 1}\n")
                f.write(f"# Problem ID: {result['problem_id']}\n")
                f.write(f"# Generated: {timestamp}\n")
                f.write(f"# Syntax Valid: {program_result.get('syntax_valid', False)}\n")
                f.write(f"# IPO Triples: {program_result.get('num_ipo_triples', 0)}\n")
                f.write("\n")
                f.write(program_result.get('solution', '# No solution available'))
            
            # IPO triples 저장
            ipo_triples = program_result.get('ipo_triples', [])
            if ipo_triples:
                ipo_dir = os.path.join(program_dir, 'ipo_triples')
                os.makedirs(ipo_dir, exist_ok=True)
                
                for i, triple in enumerate(ipo_triples):
                    triple_file = os.path.join(ipo_dir, f'triple_{i + 1}.json')
                    with open(triple_file, 'w', encoding='utf-8') as f:
                        json.dump(triple, f, indent=2, ensure_ascii=False)
            
            # Input generation 정보 저장 (새로운 구조)
            input_gen_info = program_result.get('input_generation_info')
            if input_gen_info is not None:
                input_gen_file = os.path.join(program_dir, 'input_generation_details.txt')
                with open(input_gen_file, 'w', encoding='utf-8') as f:
                    f.write(f"Input Generation Details - Program {variation_id + 1}\n")
                    f.write(f"Problem ID: {result['problem_id']}\n")
                    f.write(f"Generated: {timestamp}\n")
                    f.write("="*80 + "\n\n")
                    
                    f.write("1. FUNCTION INFO:\n")
                    f.write("="*80 + "\n")
                    func_info = input_gen_info.get('function_info', {})
                    f.write(f"Function Name: {func_info.get('name', 'N/A')}\n")
                    f.write(f"Parameters: {func_info.get('params', 'N/A')}\n")
                    f.write(f"Parameters String: {func_info.get('params_str', 'N/A')}\n\n")
                    
                    f.write("2. ARGUMENT TYPE INFO:\n")
                    f.write("="*80 + "\n")
                    f.write(input_gen_info.get('arg_type_info', 'N/A') + "\n\n")
                    
                    f.write("3. EXISTING EXAMPLES:\n")
                    f.write("="*80 + "\n")
                    for i, (inp, out) in enumerate(input_gen_info.get('existing_examples', [])):
                        f.write(f"Example {i+1}: Input: {inp} → Output: {out}\n")
                    f.write("\n")
                    
                    f.write("4. LLM PROMPT:\n")
                    f.write("="*80 + "\n")
                    f.write(input_gen_info.get('prompt', 'N/A') + "\n")
                    f.write("="*80 + "\n\n")
                    
                    f.write("5. LLM RESPONSE:\n")
                    f.write("="*80 + "\n")
                    f.write(input_gen_info.get('llm_response', 'N/A') + "\n")
                    f.write("="*80 + "\n\n")
                    
                    f.write("6. EXTRACTED INPUTS:\n")
                    f.write("="*80 + "\n")
                    extracted = input_gen_info.get('extracted_inputs', [])
                    if extracted:
                        for i, inp_data in enumerate(extracted):
                            f.write(f"Input {i+1}: {inp_data}\n")
                    else:
                        f.write("No inputs extracted\n")
                    
                    # 에러가 있었다면 표시
                    if 'error' in input_gen_info:
                        f.write("\n7. ERROR:\n")
                        f.write("="*80 + "\n")
                        f.write(input_gen_info['error'] + "\n")

def save_input_generation_details(result, base_dir, timestamp):
    """입력 생성 관련 상세 정보 저장"""
    
    if 'ipo_extraction' in result['steps']:
        ipo_step = result['steps']['ipo_extraction']
        num_generated = ipo_step.get('num_generated', 0)
        generated_inputs = ipo_step.get('generated_inputs', [])
        
        generation_prompt = ipo_step.get('generation_prompt', '')
        input_generation_attempted = bool(generation_prompt) or len(generated_inputs) > 0
        
        # Input generation 단계가 있는 경우 항상 디렉토리 생성 (실패한 경우에도 디버깅을 위해)
        if 'ipo_extraction' in result['steps']:
            # input_generation 디렉토리 생성
            input_gen_dir = os.path.join(base_dir, 'input_generation')
            os.makedirs(input_gen_dir, exist_ok=True)
            
            # 파일 저장
            details_file = os.path.join(input_gen_dir, 'generation_details.txt')
            with open(details_file, 'w', encoding='utf-8') as f:
                f.write(f"Input Generation Details\n")
                f.write(f"Problem ID: {result['problem_id']}\n")
                f.write(f"Generated: {timestamp}\n")
                f.write("="*80 + "\n\n")
                
                # 통계 정보
                f.write("GENERATION STATISTICS:\n")
                f.write("="*80 + "\n")
                f.write(f"Original IPO triples: {ipo_step.get('num_original', 0)}\n")
                f.write(f"Generated inputs: {ipo_step.get('num_generated', 0)}\n")
                f.write(f"Total IPO triples: {ipo_step.get('num_triples', 0)}\n")
                f.write(f"Input generation attempted: {input_generation_attempted}\n")
                
                # 실패 원인 분석
                if not input_generation_attempted:
                    f.write(f"FAILURE REASON: Input generation was not attempted\n")
                elif num_generated == 0:
                    f.write(f"FAILURE REASON: LLM response could not be parsed or contained no valid inputs\n")
                
                # LLM 프롬프트
                f.write("\n\n" + "="*80 + "\n")
                f.write("LLM INPUT GENERATION PROMPT:\n")
                f.write("="*80 + "\n")
                f.write(ipo_step.get('generation_prompt', 'No prompt available'))
                
                # LLM 응답
                f.write("\n\n" + "="*80 + "\n")
                f.write("LLM RESPONSE:\n")
                f.write("="*80 + "\n")
                f.write(ipo_step.get('generation_response', 'No response available'))
                
                # 추출된 입력들
                f.write("\n\n" + "="*80 + "\n")
                f.write("EXTRACTED AND VALIDATED INPUTS:\n")
                f.write("="*80 + "\n")
                generated_inputs = ipo_step.get('generated_inputs', [])
                if generated_inputs:
                    for i, inp in enumerate(generated_inputs):
                        f.write(f"\nInput {i+1}:\n")
                        f.write(f"{inp}\n")
                else:
                    f.write("No valid inputs were extracted.\n")


def save_detailed_results(result, output_dir, timestamp):
    """상세한 결과를 개별 파일로 저장 (test_complete_pipeline.py 스타일)"""
    
    # 벤치마크와 문제 ID에 따른 디렉토리 구조 생성
    benchmark = result.get('benchmark', 'unknown')
    problem_id = result['problem_id']
    problem_id_safe = problem_id.replace('/', '_')
    
    # {output_dir}/{benchmark}/{problem_id} 구조로 디렉토리 생성
    base_dir = os.path.join(output_dir, benchmark, problem_id_safe)
    os.makedirs(base_dir, exist_ok=True)
    
    # 1. 초기 LLM 솔루션 저장
    if 'llm_generation' in result['steps']:
        llm_step = result['steps']['llm_generation']
        
        initial_solution_dir = os.path.join(base_dir, 'initial_solution')
        os.makedirs(initial_solution_dir, exist_ok=True)
        
        # 벤치마크 문제 원본 저장
        if 'problem_loading' in result['steps']:
            problem_data = result['steps']['problem_loading'].get('problem', {})
            problem_file = os.path.join(initial_solution_dir, f"{problem_id_safe}_original_problem.txt")
            with open(problem_file, 'w', encoding='utf-8') as f:
                f.write(f"Problem ID: {result['problem_id']}\n")
                f.write(f"Benchmark: {result['benchmark']}\n")
                f.write(f"Generated: {timestamp}\n")
                f.write("="*80 + "\n")
                f.write("ORIGINAL BENCHMARK PROBLEM:\n")
                f.write("="*80 + "\n")
                f.write(problem_data.get('prompt', 'No prompt available'))
                f.write("\n" + "="*80 + "\n")
                f.write("FULL LLM PROMPT:\n")
                f.write("="*80 + "\n")
                # solution_generator.py에서 사용하는 전체 프롬프트 재현
                problem_prompt = problem_data.get('prompt', '')
                
                # HumanEval에 대해서는 함수 완성 요청
                if 'HumanEval' in problem_id:
                    full_prompt = f"""You are a Python writing assistant. Complete the following Python function.

{problem_prompt}

Please provide a complete implementation of the function."""
                else:
                    # MBPP와 다른 벤치마크에는 기존 프롬프트 사용
                    full_prompt = f"""
Please generate a complete, self-contained Python script that solves the following problem.  
- Wrap the entire script in a Markdown code block with syntax highlighting (```python ... ```).  
- For each function, include a concise docstring enclosed in triple single quotes (''' ... '''), placed immediately below the def line.  
The docstring should briefly describe:  
• The function's purpose  
• Input parameters  
• Return value  

Problem statement:
{problem_prompt}
"""
                f.write(full_prompt.strip())
                f.write("\n" + "="*80 + "\n")
                f.write("ENTRY POINT:\n")
                f.write("="*80 + "\n")
                f.write(problem_data.get('entry_point', 'No entry point'))
                if 'canonical_solution' in problem_data:
                    f.write("\n" + "="*80 + "\n")
                    f.write("CANONICAL SOLUTION:\n")
                    f.write("="*80 + "\n")
                    f.write(problem_data.get('canonical_solution', ''))
                if 'test' in problem_data:
                    f.write("\n" + "="*80 + "\n")
                    f.write("TEST CASES:\n")
                    f.write("="*80 + "\n")
                    f.write(str(problem_data.get('test', '')))
        
        # LLM 생성 솔루션 저장
        llm_solution_file = os.path.join(initial_solution_dir, f"{problem_id_safe}_llm_solution.txt")
        with open(llm_solution_file, 'w', encoding='utf-8') as f:
            f.write(f"Problem ID: {result['problem_id']}\n")
            f.write(f"Benchmark: {result['benchmark']}\n")
            f.write(f"Generated: {timestamp}\n")
            f.write("="*80 + "\n")
            f.write("LLM GENERATED SOLUTION:\n")
            f.write("="*80 + "\n")
            f.write(llm_step.get('solution', 'No solution generated'))
            f.write("\n" + "="*80 + "\n")
            f.write("SYNTAX VALIDATION:\n")
            f.write("="*80 + "\n")
            syntax_valid = llm_step.get('syntax_valid', False)
            f.write(f"Valid: {'✅ YES' if syntax_valid else '❌ NO'}")
            if llm_step.get('syntax_error'):
                f.write(f"\nError: {llm_step['syntax_error']}")
            
            # 초기 솔루션 정확성 평가 결과 추가
            f.write("\n" + "="*80 + "\n")
            f.write("SOLUTION CORRECTNESS EVALUATION:\n")
            f.write("="*80 + "\n")
            
            solution_eval = llm_step.get('solution_evaluation')
            if solution_eval:
                if solution_eval['correct']:
                    f.write(f"Result: ✅ CORRECT ({solution_eval['passed_tests']}/{solution_eval['total_tests']} tests passed)\n")
                else:
                    f.write(f"Result: ❌ INCORRECT ({solution_eval['passed_tests']}/{solution_eval['total_tests']} tests passed)\n")
                
                if solution_eval.get('error'):
                    f.write(f"Error: {solution_eval['error']}\n")
            else:
                f.write("No evaluation performed (syntax error or no test cases)\n")
    
    # 2. IPO 트리플 저장
    if 'ipo_extraction' in result['steps']:
        ipo_step = result['steps']['ipo_extraction']
        triples = ipo_step.get('triples', [])
        
        if triples:
            ipo_dir = os.path.join(base_dir, 'ipo_triples')
            os.makedirs(ipo_dir, exist_ok=True)
            
            for i, triple in enumerate(triples):
                triple_file = os.path.join(ipo_dir, f"{problem_id_safe}_triple_{i+1}.json")
                with open(triple_file, 'w', encoding='utf-8') as f:
                    json.dump(triple, f, indent=2, ensure_ascii=False)
    
    # 3. 생성된 태스크 프롬프트 저장
    if 'task_generation' in result['steps']:
        task_step = result['steps']['task_generation']
        all_tasks = task_step.get('all_tasks', {})
        
        if all_tasks:
            task_dir = os.path.join(base_dir, 'task_prompts')
            os.makedirs(task_dir, exist_ok=True)
            
            for task_type, tasks in all_tasks.items():
                for i, task in enumerate(tasks):
                    task_file = os.path.join(task_dir, f"{problem_id_safe}_{task_type}_{i+1}.txt")
                    with open(task_file, 'w', encoding='utf-8') as f:
                        f.write(f"Task Type: {task_type}\n")
                        f.write(f"Task ID: {task.get('task_id', 'N/A')}\n")
                        f.write(f"Generated: {timestamp}\n")
                        f.write("="*80 + "\n")
                        f.write("TASK PROMPT:\n")
                        f.write("="*80 + "\n")
                        f.write(task.get('prompt', 'No prompt available'))
    
    # 4. LLM 태스크 응답 저장
    if 'task_evaluation' in result['steps']:
        eval_step = result['steps']['task_evaluation']
        evaluations = eval_step.get('evaluations', {})
        
        response_dir = os.path.join(base_dir, 'llm_responses')
        os.makedirs(response_dir, exist_ok=True)
        
        response_count = 0
        for task_type, task_evals in evaluations.items():
            for i, evaluation in enumerate(task_evals):
                response_file = os.path.join(response_dir, f"{problem_id_safe}_{task_type}_{i+1}_response.txt")
                with open(response_file, 'w', encoding='utf-8') as f:
                    f.write(f"Task Type: {task_type}\n")
                    f.write(f"Task ID: {evaluation.get('task_id', 'N/A')}\n")
                    f.write(f"Generated: {timestamp}\n")
                    f.write("="*80 + "\n")
                    f.write("ORIGINAL PROMPT:\n")
                    f.write("="*80 + "\n")
                    f.write(evaluation.get('prompt', 'No prompt available'))
                    f.write("\n" + "="*80 + "\n")
                    f.write("LLM RESPONSE:\n")
                    f.write("="*80 + "\n")
                    f.write(evaluation.get('llm_response', 'No response'))
                    f.write("\n" + "="*80 + "\n")
                    f.write("EXPECTED SOLUTION:\n")
                    f.write("="*80 + "\n")
                    f.write(evaluation.get('expected_solution', 'No expected solution'))
                    
                    # 추출된 정답 정보 추가 (보상 계산 결과에서 가져오기)
                    if 'reward_computation' in result['steps']:
                        reward_step = result['steps']['reward_computation']
                        rewards = reward_step.get('rewards', {})
                        rewards_by_type = rewards.get('rewards_by_type', {})
                        
                        # 현재 태스크의 보상 정보 찾기
                        current_task_rewards = rewards_by_type.get(task_type, [])
                        current_reward = None
                        for reward in current_task_rewards:
                            if reward.get('task_id') == evaluation.get('task_id'):
                                current_reward = reward
                                break
                        
                        if current_reward and 'extracted_answer' in current_reward:
                            f.write("\n" + "="*80 + "\n")
                            f.write("EXTRACTED ANSWER:\n")
                            f.write("="*80 + "\n")
                            f.write(current_reward['extracted_answer'])
                            f.write("\n" + "="*80 + "\n")
                            f.write("MATCH RESULT:\n")
                            f.write("="*80 + "\n")
                            match_result = "✅ CORRECT" if current_reward.get('basic_accuracy', 0) > 0 else "❌ INCORRECT"
                            f.write(f"{match_result} (Score: {current_reward.get('basic_accuracy', 0):.3f})")
                            
                response_count += 1
                
        print(f"📁 LLM 응답 저장: {response_dir}/ ({response_count}개 파일)")
    
    # 4.5. 입력 생성 상세 정보 저장
    save_input_generation_details(result, base_dir, timestamp)
    
    # 5. 전체 결과 요약 저장
    summary_file = os.path.join(base_dir, f"{problem_id_safe}_summary.json")
    with open(summary_file, 'w', encoding='utf-8') as f:
        summary = {
            'problem_id': result['problem_id'],
            'benchmark': result['benchmark'],
            'success': result['success'],
            'timestamp': timestamp,
            'initial_solution_correct': False,
            'ipo_extraction_success': False,
            'reasoning_task_results': {}
        }
        
        # 초기 솔루션 결과
        if 'llm_generation' in result['steps']:
            llm_step = result['steps']['llm_generation']
            eval_result = llm_step.get('solution_evaluation')
            if eval_result:
                summary['initial_solution_correct'] = eval_result['correct']
        
        # IPO 추출 결과
        if 'ipo_extraction' in result['steps']:
            ipo_step = result['steps']['ipo_extraction']
            summary['ipo_extraction_success'] = ipo_step.get('success', False)
        
        # Reasoning task 결과
        if 'reward_computation' in result['steps']:
            reward_step = result['steps']['reward_computation']
            rewards = reward_step.get('rewards', {})
            for task_type, type_rewards in rewards.get('rewards_by_type', {}).items():
                correct_count = sum(1 for r in type_rewards if r['basic_accuracy'] > 0)
                total_count = len(type_rewards)
                summary['reasoning_task_results'][task_type] = {
                    'correct': correct_count,
                    'total': total_count,
                    'accuracy': correct_count / total_count if total_count > 0 else 0
                }
        
        json.dump(summary, f, indent=2, ensure_ascii=False)


def run_batch_evaluation(args):
    """벤치마크 전체에 대한 배치 평가 실행"""
    
    # 타임스탬프 생성
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    
    # 결과 디렉토리 생성
    output_dir = os.path.join(args.output_dir, f"batch_evaluation_{timestamp}")
    os.makedirs(output_dir, exist_ok=True)
    
    # 로거 설정
    logger = TestTimeLogger(log_level='INFO')
    logger.log_info(f"🚀 Starting batch TestTime RLVR evaluation")
    logger.log_info(f"📋 Model: {args.model}")
    logger.log_info(f"🎯 Benchmark: {args.benchmark}")
    logger.log_info(f"📊 Max problems: {args.max_problems}")
    logger.log_info(f"📁 Output: {output_dir}")
    
    # TestTime 설정
    config = TestTimeConfig(
        model_name=args.model,
        max_adaptation_steps=3,
        learning_rate=1e-5,
        task_distribution={'induction': 0.4, 'deduction': 0.3, 'abduction': 0.3},
        adaptation_batch_size=1,
        max_tasks_per_type=3,
        use_flash_attention=False,
        torch_dtype='float16',  # VLLM 호환성을 위해 float16 사용
        enable_gradient_checkpointing=False
    )
    
    # 벤치마크 설정 (절대 경로로 계산)
    base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    
    if args.benchmark == 'humaneval':
        benchmark_config = BenchmarkConfig.get_humaneval_config()
        benchmark_config.data_path = os.path.join(base_dir, 'evaluation/code_eval/data/HumanEvalPlus.jsonl')
    elif args.benchmark == 'mbpp':
        benchmark_config = BenchmarkConfig.get_mbpp_config()
        benchmark_config.data_path = os.path.join(base_dir, 'evaluation/code_eval/data/MbppPlus.jsonl')
    else:
        raise ValueError(f"Unsupported benchmark: {args.benchmark}")
    
    # 모델 및 토크나이저 로드
    logger.log_info("📦 Loading model and tokenizer...")
    try:
        model, tokenizer = InitialSolutionGenerator.load_model_with_optimizations(
            args.model, f'cuda:{args.gpu}', config, use_vllm=True
        )
        logger.log_info("✅ Model loaded successfully")
    except Exception as e:
        logger.log_error(f"❌ Failed to load model: {e}")
        return False
    
    # 파이프라인 초기화
    pipeline = CompleteTestTimePipeline(model, tokenizer, config, logger)
    
    # 문제 목록 로드
    logger.log_info("📄 Loading benchmark problems...")
    problems = load_benchmark_problems(benchmark_config)
    
    if not problems:
        logger.log_error("❌ No problems found in benchmark")
        return False
    
    # Resume 기능 처리
    original_problem_count = len(problems)
    completed_problems = set()
    existing_results = None
    
    if args.resume or args.start_from:
        # 기존 결과 로드
        completed_problems = get_completed_problems(output_dir)
        
        if completed_problems:
            logger.log_info(f"🔄 Resume mode: Found {len(completed_problems)} completed problems")
            
            # 기존 결과 로드
            existing_results_file = os.path.join(output_dir, "batch_evaluation_results.json")
            if os.path.exists(existing_results_file):
                with open(existing_results_file, 'r', encoding='utf-8') as f:
                    existing_results = json.load(f)
                    logger.log_info(f"📁 Loaded existing results from {existing_results_file}")
        
        # 완료된 문제 제외
        problems = [p for p in problems if p not in completed_problems]
        logger.log_info(f"📊 After excluding completed: {len(problems)} problems remaining")
    
    # 특정 문제부터 시작
    if args.start_from:
        try:
            start_idx = problems.index(args.start_from)
            problems = problems[start_idx:]
            logger.log_info(f"🏁 Starting from problem: {args.start_from} (index {start_idx})")
        except ValueError:
            logger.log_warning(f"⚠️  Problem {args.start_from} not found, starting from beginning")
    
    # 문제 수 제한 (남은 문제에 대해서만)
    if args.max_problems > 0:
        problems = problems[:args.max_problems]
    
    if not problems:
        logger.log_info("🎉 All problems already completed!")
        return True
    
    logger.log_info(f"📊 Processing {len(problems)} problems (Total in benchmark: {original_problem_count})")
    
    # 평가 결과 수집 (기존 결과 또는 새로운 결과)
    if existing_results:
        # 기존 결과를 기반으로 시작 (통계만 남기고 새로운 문제를 위한 초기화)
        results = {
            'config': existing_results['config'].copy(),
            'initial_solution_stats': {
                **existing_results['initial_solution_stats'].copy(),
                'first_attempt_correct': existing_results['initial_solution_stats'].get('first_attempt_correct', 0),
                'at_least_once_correct': existing_results['initial_solution_stats'].get('at_least_once_correct', 0),
                'total_attempts': existing_results['initial_solution_stats'].get('total_attempts', 0),
                'total_successes': existing_results['initial_solution_stats'].get('total_successes', 0),
                'first_attempt_failed_problem_ids': existing_results['initial_solution_stats'].get('first_attempt_failed_problem_ids', []),
                'never_success_problem_ids': existing_results['initial_solution_stats'].get('never_success_problem_ids', [])
            },
            'reasoning_task_stats': {
                task_type: {
                    **stats,
                    'total_accuracy': stats.get('total_accuracy', 0.0)  # 기존 결과에 없을 경우 기본값
                }
                for task_type, stats in existing_results['reasoning_task_stats'].items()
            },
            'ipo_extraction_stats': existing_results['ipo_extraction_stats'].copy(),
            'input_generation_stats': existing_results.get('input_generation_stats', {
                'total_attempts': 0,
                'successful': 0,
                'failed': 0,
                'total_generated_inputs': 0,
                'average_inputs_per_problem': 0.0,
                'problems_with_generation': []
            }).copy(),
            'current_evaluation_stats': existing_results.get('current_evaluation_stats', existing_results.get('baseline_evaluation_stats', {
                'total_attempts': 0,
                'successful': 0,
                'failed': 0,
                'total_rounds': 0,
                'total_success_rounds': 0,
                'average_success_rate': 0.0,
                'failed_problem_ids': []
            })).copy(),
            'diverse_programs_stats': existing_results.get('diverse_programs_stats', {
                'total_attempts': 0,
                'successful': 0,
                'failed': 0,
                'total_programs_generated': 0,
                'total_valid_programs': 0,
                'total_ipo_triples': 0,
                'average_programs_per_problem': 0.0,
                'average_ipo_per_problem': 0.0,
                'failed_problem_ids': []
            }).copy(),
            'timing_stats': existing_results['timing_stats'].copy(),
            'problem_results': existing_results['problem_results'].copy()
        }
        results['config']['resumed'] = True
        results['config']['resumed_at'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        results['config']['remaining_problems'] = len(problems)
    else:
        # 새로운 결과 구조
        results = {
            'config': {
                'model': args.model,
                'benchmark': args.benchmark,
                'timestamp': timestamp,
                'total_problems': original_problem_count,
                'processing_problems': len(problems)
            },
        'initial_solution_stats': {
            'total': 0,
            'first_attempt_correct': 0,        # 첫 번째 시도만 정답
            'at_least_once_correct': 0,        # 5번 중 1번이라도 정답
            'total_attempts': 0,               # 전체 시도 수
            'total_successes': 0,              # 전체 성공 수
            'first_attempt_failed_problem_ids': [],  # 첫 시도 실패 문제들
            'never_success_problem_ids': [],   # 5번 모두 실패 문제들
            'syntax_errors': 0,
            'evaluation_errors': 0,
            'correct': 0,  # 기존 호환성 유지 (at_least_once_correct와 동일)
            'failed_problem_ids': []  # 기존 호환성 유지
        },
        'reasoning_task_stats': {
            'induction': {
                'total': 0, 
                'correct': 0, 
                'accuracy_0_count': 0,  # accuracy = 0인 개수
                'accuracy_1_count': 0,  # accuracy = 1인 개수
                'total_accuracy': 0.0   # 전체 평균 정확도 계산용
            },
            'deduction': {
                'total': 0, 
                'correct': 0, 
                'accuracy_0_count': 0,
                'accuracy_1_count': 0,
                'total_accuracy': 0.0
            },
            'abduction': {
                'total': 0, 
                'correct': 0, 
                'accuracy_0_count': 0,
                'accuracy_1_count': 0,
                'total_accuracy': 0.0
            }
        },
        'timing_stats': {
            'total_time_seconds': 0,
            'average_time_per_problem': 0,
            'problem_times': []  # 각 문제별 소요시간
        },
        'ipo_extraction_stats': {
            'total_attempts': 0,
            'successful': 0,
            'failed': 0,
            'failed_problem_ids': []  # IPO 추출 실패 문제 ID 목록
        },
        'input_generation_stats': {
            'total_attempts': 0,
            'successful': 0,
            'failed': 0,
            'total_generated_inputs': 0,
            'average_inputs_per_problem': 0.0,
            'problems_with_generation': []
        },
        'current_evaluation_stats': {
            'total_attempts': 0,
            'successful': 0,
            'failed': 0,
            'total_rounds': 0,
            'total_success_rounds': 0,
            'average_success_rate': 0.0,
            'failed_problem_ids': []
        },
        'diverse_programs_stats': {
            'total_attempts': 0,
            'successful': 0,
            'failed': 0,
            'total_programs_generated': 0,
            'total_valid_programs': 0,
            'total_ipo_triples': 0,
            'average_programs_per_problem': 0.0,
            'average_ipo_per_problem': 0.0,
            'failed_problem_ids': []
        },
        'problem_results': []
    }
    
    # 각 문제에 대해 파이프라인 실행
    start_total_time = time.time()
    
    for i, problem_id in enumerate(problems):
        logger.log_info(f"🔄 [{i+1}/{len(problems)}] Processing {problem_id}")
        
        # 문제별 시간 측정 시작
        problem_start_time = time.time()
        
        # 각 단계별 성공/실패 추적
        step_results = {
            'problem_loading': False,
            'llm_generation': False,
            'solution_evaluation': False,
            'ipo_extraction': False,
            'input_generation': False,  # 새로 추가
            'task_generation': False,
            'task_evaluation': False
        }
        
        try:
            # 파이프라인 실행
            result = pipeline.run_complete_pipeline(benchmark_config, problem_id)
            
            # 문제별 시간 측정 종료
            problem_end_time = time.time()
            problem_duration = problem_end_time - problem_start_time
            
            # 각 단계별 성공 여부 확인
            if 'steps' in result:
                step_results['problem_loading'] = result.get('success', False)
                
                # baseline_evaluation이 있으면 LLM generation과 solution evaluation이 성공
                if 'baseline_evaluation' in result['steps']:
                    baseline_eval = result['steps']['baseline_evaluation']
                    step_results['llm_generation'] = baseline_eval.get('success', False)
                    step_results['solution_evaluation'] = baseline_eval.get('success_count', 0) > 0
                
                # diverse_programs가 있으면 IPO extraction이 성공
                if 'diverse_programs' in result['steps']:
                    diverse_progs = result['steps']['diverse_programs']
                    step_results['ipo_extraction'] = diverse_progs.get('total_ipo_triples', 0) > 0
                # Input generation 성공 여부 - diverse_programs에 generated_inputs가 있는지 확인
                if 'diverse_programs' in result['steps']:
                    diverse_progs = result['steps']['diverse_programs']
                    total_generated = sum(p.get('num_generated_inputs', 0) for p in diverse_progs.get('programs', []))
                    step_results['input_generation'] = total_generated > 0
                
                # Task generation과 evaluation 성공 여부
                if 'task_generation' in result['steps']:
                    task_gen = result['steps']['task_generation']
                    step_results['task_generation'] = task_gen.get('total_tasks', 0) > 0
                
                if 'task_evaluation' in result['steps']:
                    task_eval = result['steps']['task_evaluation']
                    step_results['task_evaluation'] = task_eval.get('total_evaluated', 0) > 0
            
            # 단계별 로깅
            logger.log_info(f"   📋 Problem Loading: {'✅' if step_results['problem_loading'] else '❌'}")
            logger.log_info(f"   🤖 LLM Generation: {'✅' if step_results['llm_generation'] else '❌'}")
            logger.log_info(f"   📊 Solution Evaluation: {'✅' if step_results['solution_evaluation'] else '❌'}")
            logger.log_info(f"   🔍 IPO Extraction: {'✅' if step_results['ipo_extraction'] else '❌'}")
            logger.log_info(f"   🎲 Input Generation: {'✅' if step_results['input_generation'] else '❌'}")
            logger.log_info(f"   📝 Task Generation: {'✅' if step_results['task_generation'] else '❌'}")
            logger.log_info(f"   🧠 Task Evaluation: {'✅' if step_results['task_evaluation'] else '❌'}")
            
            # 새로운 구조에서는 initial_solution 저장 불필요 (current_evaluation으로 대체됨)
            # if step_results['llm_generation']:
            #     try:
            #         save_initial_solution_only(result, output_dir, timestamp, problem_id)
            #         logger.log_info(f"   📁 Initial solution saved for {problem_id}")
            #     except Exception as e:
            #         logger.log_warning(f"   ⚠️  Failed to save initial solution: {e}")
            
            # 전체 성공시에만 완전한 결과 저장
            if result['success']:
                try:
                    save_detailed_results(result, output_dir, timestamp)
                    
                    # 새로운 현재 평가 및 다양한 프로그램 결과 저장
                    base_dir = os.path.join(output_dir, result.get('benchmark', 'unknown'), problem_id.replace('/', '_'))
                    save_current_evaluation_details(result, base_dir, timestamp)
                    save_diverse_programs_details(result, base_dir, timestamp)
                    
                    logger.log_info(f"   📁 Complete results saved for {problem_id}")
                except Exception as e:
                    logger.log_warning(f"   ⚠️  Failed to save complete results: {e}")
            
            # 초기 솔루션 통계 업데이트
            results['initial_solution_stats']['total'] += 1
            initial_solution_correct = False
            
            # IPO 추출 통계 업데이트
            results['ipo_extraction_stats']['total_attempts'] += 1
            
            if result['success']:
                # baseline_evaluation 결과로 통계 계산 (5번 시도)
                baseline_eval = result['steps'].get('baseline_evaluation', {})
                attempts = baseline_eval.get('solutions', [])
                
                if attempts:
                    # 전체 시도 및 성공 수 누적
                    results['initial_solution_stats']['total_attempts'] += len(attempts)
                    successes = sum(1 for attempt in attempts if attempt.get('evaluation', {}).get('correct', False))
                    results['initial_solution_stats']['total_successes'] += successes
                    
                    # 1. 첫 번째 시도 정확도
                    first_attempt_correct = attempts[0].get('evaluation', {}).get('correct', False)
                    if first_attempt_correct:
                        results['initial_solution_stats']['first_attempt_correct'] += 1
                    else:
                        # 첫 시도 실패 문제 ID 추가
                        if problem_id not in results['initial_solution_stats']['first_attempt_failed_problem_ids']:
                            results['initial_solution_stats']['first_attempt_failed_problem_ids'].append(problem_id)
                    
                    # 2. 5번 중 1번이라도 성공
                    at_least_once_success = any(attempt.get('evaluation', {}).get('correct', False) for attempt in attempts)
                    if at_least_once_success:
                        results['initial_solution_stats']['at_least_once_correct'] += 1
                        results['initial_solution_stats']['correct'] += 1  # 기존 호환성
                        initial_solution_correct = True
                    else:
                        # 5번 모두 실패한 문제 ID 추가
                        if problem_id not in results['initial_solution_stats']['never_success_problem_ids']:
                            results['initial_solution_stats']['never_success_problem_ids'].append(problem_id)
                        if problem_id not in results['initial_solution_stats']['failed_problem_ids']:
                            results['initial_solution_stats']['failed_problem_ids'].append(problem_id)
                    
                    # 구문 오류 및 평가 오류 확인 (첫 번째 시도 기준)
                    first_attempt = attempts[0]
                    if not first_attempt.get('syntax_valid', True):
                        results['initial_solution_stats']['syntax_errors'] += 1
                    if first_attempt.get('evaluation_error'):
                        results['initial_solution_stats']['evaluation_errors'] += 1
                else:
                    # baseline_evaluation이 없는 경우 기존 방식으로 fallback
                    llm_gen = result['steps'].get('llm_generation', {})
                    eval_result = llm_gen.get('solution_evaluation')
                    
                    if eval_result:
                        if eval_result['correct']:
                            results['initial_solution_stats']['first_attempt_correct'] += 1
                            results['initial_solution_stats']['at_least_once_correct'] += 1
                            results['initial_solution_stats']['correct'] += 1
                            initial_solution_correct = True
                        else:
                            # 실패 문제 ID 추가
                            if problem_id not in results['initial_solution_stats']['first_attempt_failed_problem_ids']:
                                results['initial_solution_stats']['first_attempt_failed_problem_ids'].append(problem_id)
                            if problem_id not in results['initial_solution_stats']['never_success_problem_ids']:
                                results['initial_solution_stats']['never_success_problem_ids'].append(problem_id)
                            if problem_id not in results['initial_solution_stats']['failed_problem_ids']:
                                results['initial_solution_stats']['failed_problem_ids'].append(problem_id)
                            
                        if eval_result.get('error'):
                            results['initial_solution_stats']['evaluation_errors'] += 1
                    
                    if not llm_gen.get('syntax_valid', True):
                        results['initial_solution_stats']['syntax_errors'] += 1
                
                # IPO 추출 성공 여부 확인
                ipo_step = result['steps'].get('ipo_extraction', {})
                if ipo_step.get('success', False) and ipo_step.get('triples'):
                    results['ipo_extraction_stats']['successful'] += 1
                else:
                    results['ipo_extraction_stats']['failed'] += 1
                    if problem_id not in results['ipo_extraction_stats']['failed_problem_ids']:
                        results['ipo_extraction_stats']['failed_problem_ids'].append(problem_id)
                    logger.log_info(f"   ⚠️  IPO extraction failed for {problem_id}")
                
                # Input generation 통계 업데이트
                if ipo_step.get('success', False):
                    results['input_generation_stats']['total_attempts'] += 1
                    
                    if ipo_step.get('num_generated', 0) > 0:
                        results['input_generation_stats']['successful'] += 1
                        results['input_generation_stats']['total_generated_inputs'] += ipo_step['num_generated']
                        if problem_id not in results['input_generation_stats']['problems_with_generation']:
                            results['input_generation_stats']['problems_with_generation'].append(problem_id)
                    else:
                        results['input_generation_stats']['failed'] += 1
                
                # Current evaluation 통계 업데이트
                baseline_step = result['steps'].get('baseline_evaluation', {})
                if baseline_step:
                    results['current_evaluation_stats']['total_attempts'] += 1
                    
                    if baseline_step.get('success', False):
                        results['current_evaluation_stats']['successful'] += 1
                        results['current_evaluation_stats']['total_rounds'] += baseline_step.get('total_rounds', 0)
                        results['current_evaluation_stats']['total_success_rounds'] += baseline_step.get('success_count', 0)
                    else:
                        results['current_evaluation_stats']['failed'] += 1
                        if problem_id not in results['current_evaluation_stats']['failed_problem_ids']:
                            results['current_evaluation_stats']['failed_problem_ids'].append(problem_id)
                
                # Diverse programs 통계 업데이트
                diverse_step = result['steps'].get('diverse_programs', {})
                if diverse_step:
                    results['diverse_programs_stats']['total_attempts'] += 1
                    
                    if diverse_step.get('success', False):
                        results['diverse_programs_stats']['successful'] += 1
                        results['diverse_programs_stats']['total_programs_generated'] += diverse_step.get('total_programs', 0)
                        results['diverse_programs_stats']['total_valid_programs'] += diverse_step.get('valid_programs', 0)
                        results['diverse_programs_stats']['total_ipo_triples'] += diverse_step.get('total_ipo_triples', 0)
                    else:
                        results['diverse_programs_stats']['failed'] += 1
                        if problem_id not in results['diverse_programs_stats']['failed_problem_ids']:
                            results['diverse_programs_stats']['failed_problem_ids'].append(problem_id)
                
                # Reasoning tasks 통계 업데이트 (문제별 평균 정확도 기준)
                reward_step = result['steps'].get('reward_computation', {})
                rewards = reward_step.get('rewards', {})
                
                # 각 문제별로 task type별 평균 accuracy 계산
                for task_type, type_rewards in rewards.get('rewards_by_type', {}).items():
                    if type_rewards:  # task가 있는 경우에만
                        results['reasoning_task_stats'][task_type]['total'] += 1
                        
                        # 이 문제에서 해당 task type의 평균 accuracy 계산
                        task_accuracies = [reward['basic_accuracy'] for reward in type_rewards]
                        problem_avg_accuracy = sum(task_accuracies) / len(task_accuracies)
                        
                        # 전체 평균 정확도에 누적
                        results['reasoning_task_stats'][task_type]['total_accuracy'] += problem_avg_accuracy
                        
                        # 문제별 평균이 0보다 크면 correct로 카운트
                        if problem_avg_accuracy > 0:
                            results['reasoning_task_stats'][task_type]['correct'] += 1
                        
                        # 문제별 평균 accuracy 분포 추적
                        if problem_avg_accuracy == 0.0:
                            results['reasoning_task_stats'][task_type]['accuracy_0_count'] += 1
                        elif problem_avg_accuracy == 1.0:
                            results['reasoning_task_stats'][task_type]['accuracy_1_count'] += 1
                        # partial accuracy는 0 < acc < 1 (자동으로 계산됨)
            
            # 문제별 결과 저장 (시간 정보 포함)
            problem_result = {
                'problem_id': problem_id,
                'success': result['success'],
                'error': result.get('error'),
                'step_results': step_results,
                'initial_solution_correct': initial_solution_correct,
                'reasoning_tasks_correct': {},
                'time_seconds': problem_duration
            }
            
            if result['success']:
                # Reasoning tasks 결과 (상세한 정확도 정보 포함)
                reward_step = result['steps'].get('reward_computation', {})
                rewards = reward_step.get('rewards', {})
                
                for task_type, type_rewards in rewards.get('rewards_by_type', {}).items():
                    correct_count = sum(1 for r in type_rewards if r['basic_accuracy'] > 0)
                    total_count = len(type_rewards)
                    accuracy_0_count = sum(1 for r in type_rewards if r['basic_accuracy'] == 0)
                    accuracy_1_count = sum(1 for r in type_rewards if r['basic_accuracy'] == 1)
                    
                    # 이 problem에서의 평균 accuracy
                    problem_average = sum(r['basic_accuracy'] for r in type_rewards) / len(type_rewards) if type_rewards else 0.0
                    
                    problem_result['reasoning_tasks_correct'][task_type] = {
                        'correct_count': correct_count,
                        'total_count': total_count,
                        'accuracy_0_count': accuracy_0_count,
                        'accuracy_1_count': accuracy_1_count,
                        'problem_average_accuracy': problem_average,
                        'summary': f"{correct_count}/{total_count} (avg: {problem_average:.3f})"
                    }
            
            # 시간 정보 추가
            results['timing_stats']['problem_times'].append({
                'problem_id': problem_id,
                'time_seconds': problem_duration,
                'time_formatted': f"{problem_duration:.2f}s"
            })
            
            results['problem_results'].append(problem_result)
            
            # 진행 상황 로깅
            if result['success']:
                logger.log_info(f"   ✅ Success - Initial: {'✅' if problem_result['initial_solution_correct'] else '❌'}")
            else:
                logger.log_error(f"   ❌ Failed: {result.get('error', 'Unknown error')}")
        
        except Exception as e:
            # 예외 발생시에도 시간 측정
            problem_end_time = time.time()
            problem_duration = problem_end_time - problem_start_time
            
            logger.log_error(f"   💥 Exception during pipeline execution: {e}")
            logger.log_error(f"   📋 Problem Loading: ❌ (Exception)")
            logger.log_error(f"   🤖 LLM Generation: ❌ (Exception)")
            logger.log_error(f"   📊 Solution Evaluation: ❌ (Exception)")
            logger.log_error(f"   🔍 IPO Extraction: ❌ (Exception)")
            logger.log_error(f"   📝 Task Generation: ❌ (Exception)")
            logger.log_error(f"   🧠 Task Evaluation: ❌ (Exception)")
            
            # 예외 발생시 통계 업데이트
            results['initial_solution_stats']['total'] += 1
            # 예외 발생시 모든 실패 목록에 추가
            if problem_id not in results['initial_solution_stats']['first_attempt_failed_problem_ids']:
                results['initial_solution_stats']['first_attempt_failed_problem_ids'].append(problem_id)
            if problem_id not in results['initial_solution_stats']['never_success_problem_ids']:
                results['initial_solution_stats']['never_success_problem_ids'].append(problem_id)
            if problem_id not in results['initial_solution_stats']['failed_problem_ids']:
                results['initial_solution_stats']['failed_problem_ids'].append(problem_id)
            
            results['ipo_extraction_stats']['total_attempts'] += 1
            results['ipo_extraction_stats']['failed'] += 1
            if problem_id not in results['ipo_extraction_stats']['failed_problem_ids']:
                results['ipo_extraction_stats']['failed_problem_ids'].append(problem_id)
            
            # 예외 발생시에도 문제 결과 추가 (단계별 정보 포함)
            results['problem_results'].append({
                'problem_id': problem_id,
                'success': False,
                'error': str(e),
                'step_results': {
                    'problem_loading': False,
                    'llm_generation': False,
                    'solution_evaluation': False,
                    'ipo_extraction': False,
                    'input_generation': False,
                    'task_generation': False,
                    'task_evaluation': False
                },
                'initial_solution_correct': False,
                'reasoning_tasks_correct': {},
                'time_seconds': problem_duration
            })
            
            # 시간 정보 추가
            results['timing_stats']['problem_times'].append({
                'problem_id': problem_id,
                'time_seconds': problem_duration,
                'time_formatted': f"{problem_duration:.2f}s"
            })
    
    # 전체 실행 시간 계산
    end_total_time = time.time()
    total_duration = end_total_time - start_total_time
    
    # 시간 통계 업데이트
    results['timing_stats']['total_time_seconds'] = total_duration
    if len(problems) > 0:
        results['timing_stats']['average_time_per_problem'] = total_duration / len(problems)
    
    # 최종 통계 계산
    logger.log_info("📊 Computing final statistics...")
    
    # Input generation 평균 계산
    input_stats = results['input_generation_stats']
    if input_stats['successful'] > 0:
        input_stats['average_inputs_per_problem'] = input_stats['total_generated_inputs'] / input_stats['successful']
    
    # Current evaluation 평균 계산
    current_stats = results['current_evaluation_stats']
    if current_stats['total_rounds'] > 0:
        current_stats['average_success_rate'] = current_stats['total_success_rounds'] / current_stats['total_rounds']
    
    # Diverse programs 평균 계산
    diverse_stats = results['diverse_programs_stats']
    if diverse_stats['successful'] > 0:
        diverse_stats['average_programs_per_problem'] = diverse_stats['total_programs_generated'] / diverse_stats['successful']
        diverse_stats['average_ipo_per_problem'] = diverse_stats['total_ipo_triples'] / diverse_stats['successful']
    
    # 시간 통계 표시
    logger.log_info(f"⏱️  Total execution time: {total_duration:.2f}s ({total_duration/60:.1f}min)")
    logger.log_info(f"⏱️  Average time per problem: {results['timing_stats']['average_time_per_problem']:.2f}s")
    
    # 초기 솔루션 정확률 (3가지 기준)
    initial_stats = results['initial_solution_stats']
    if initial_stats['total'] > 0:
        # 1. 첫 번째 시도 정확도
        first_attempt_accuracy = initial_stats['first_attempt_correct'] / initial_stats['total']
        logger.log_info(f"📈 First Attempt Accuracy: {first_attempt_accuracy:.3f} ({initial_stats['first_attempt_correct']}/{initial_stats['total']})")
        
        # 2. 5번 중 1번이라도 성공 정확도
        at_least_once_accuracy = initial_stats['at_least_once_correct'] / initial_stats['total']
        logger.log_info(f"📈 At-Least-Once Success Rate: {at_least_once_accuracy:.3f} ({initial_stats['at_least_once_correct']}/{initial_stats['total']})")
        
        # 3. 5번 평균 정확도
        if initial_stats['total_attempts'] > 0:
            average_accuracy = initial_stats['total_successes'] / initial_stats['total_attempts']
            logger.log_info(f"📈 Average Success Rate (5 attempts): {average_accuracy:.3f} ({initial_stats['total_successes']}/{initial_stats['total_attempts']})")
        
        logger.log_info(f"📈 First attempt failed problems: {len(initial_stats['first_attempt_failed_problem_ids'])}/{initial_stats['total']}")
        logger.log_info(f"📈 Never success problems: {len(initial_stats['never_success_problem_ids'])}/{initial_stats['total']}")
    
    # IPO 추출 통계
    ipo_stats = results['ipo_extraction_stats']
    if ipo_stats['total_attempts'] > 0:
        ipo_success_rate = ipo_stats['successful'] / ipo_stats['total_attempts']
        logger.log_info(f"🔗 IPO Extraction Success Rate: {ipo_success_rate:.3f} ({ipo_stats['successful']}/{ipo_stats['total_attempts']})")
        logger.log_info(f"🔗 IPO Extraction Failed: {ipo_stats['failed']} problems")
    
    # Input generation 통계
    if input_stats['total_attempts'] > 0:
        input_success_rate = input_stats['successful'] / input_stats['total_attempts']
        logger.log_info(f"🎲 Input Generation Success Rate: {input_success_rate:.3f} ({input_stats['successful']}/{input_stats['total_attempts']})")
        logger.log_info(f"🎲 Total Generated Inputs: {input_stats['total_generated_inputs']}")
        logger.log_info(f"🎲 Average Inputs per Problem: {input_stats['average_inputs_per_problem']:.2f}")
    
    # Current evaluation 통계
    if current_stats['total_attempts'] > 0:
        current_success_rate = current_stats['successful'] / current_stats['total_attempts']
        logger.log_info(f"📊 Current Evaluation Success Rate: {current_success_rate:.3f} ({current_stats['successful']}/{current_stats['total_attempts']})")
        logger.log_info(f"📊 Total Current Rounds: {current_stats['total_rounds']}")
        logger.log_info(f"📊 Average Success Rate: {current_stats['average_success_rate']:.3f}")
    
    # Diverse programs 통계
    if diverse_stats['total_attempts'] > 0:
        diverse_success_rate = diverse_stats['successful'] / diverse_stats['total_attempts']
        logger.log_info(f"🎨 Diverse Programs Success Rate: {diverse_success_rate:.3f} ({diverse_stats['successful']}/{diverse_stats['total_attempts']})")
        logger.log_info(f"🎨 Total Programs Generated: {diverse_stats['total_programs_generated']}")
        logger.log_info(f"🎨 Total Valid Programs: {diverse_stats['total_valid_programs']}")
        logger.log_info(f"🎨 Total IPO Triples: {diverse_stats['total_ipo_triples']}")
        logger.log_info(f"🎨 Average Programs per Problem: {diverse_stats['average_programs_per_problem']:.2f}")
        logger.log_info(f"🎨 Average IPO per Problem: {diverse_stats['average_ipo_per_problem']:.2f}")
    
    # Reasoning tasks 정확률 (상세 정보 포함)
    for task_type, stats in results['reasoning_task_stats'].items():
        if stats['total'] > 0:
            task_accuracy = stats['correct'] / stats['total']
            logger.log_info(f"📈 {task_type.title()} Task Accuracy: {task_accuracy:.3f} ({stats['correct']}/{stats['total']})")
            logger.log_info(f"   - Accuracy=0: {stats['accuracy_0_count']}, Accuracy=1: {stats['accuracy_1_count']}")
    
    # 결과 파일 저장
    result_file = os.path.join(output_dir, f"batch_evaluation_results.json")
    with open(result_file, 'w', encoding='utf-8') as f:
        json.dump(results, f, indent=2, ensure_ascii=False)
    
    # 요약 리포트 생성 (향상된 통계 포함)
    summary_file = os.path.join(output_dir, f"evaluation_summary.md")
    with open(summary_file, 'w', encoding='utf-8') as f:
        f.write(f"# TestTime RLVR Batch Evaluation Report\n\n")
        f.write(f"**Model**: {args.model}\n")
        f.write(f"**Benchmark**: {args.benchmark}\n")
        f.write(f"**Date**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
        f.write(f"**Total Problems**: {results['initial_solution_stats']['total']}\n")
        f.write(f"**Output Directory**: `{output_dir}`\n\n")
        
        f.write(f"## Directory Structure\n")
        f.write(f"```\n")
        f.write(f"{output_dir}/\n")
        f.write(f"├── batch_evaluation_results.json  # 전체 통계 결과\n")
        f.write(f"├── evaluation_summary.md         # 이 요약 파일\n")
        f.write(f"└── {args.benchmark}/             # 벤치마크별 상세 결과\n")
        f.write(f"    └── [problem_id]/             # 각 문제별 디렉토리\n")
        f.write(f"        ├── initial_solution/      # 초기 LLM 솔루션\n")
        f.write(f"        ├── ipo_triples/           # IPO 트리플\n")
        f.write(f"        ├── task_prompts/          # 생성된 태스크\n")
        f.write(f"        ├── llm_responses/         # LLM 응답\n")
        f.write(f"        └── [problem_id]_summary.json  # 문제별 요약\n")
        f.write(f"```\n\n")
        
        # 시간 통계 섹션
        f.write(f"## Timing Statistics\n")
        f.write(f"- **Total Execution Time**: {total_duration:.2f}s ({total_duration/60:.1f} minutes)\n")
        f.write(f"- **Average Time per Problem**: {results['timing_stats']['average_time_per_problem']:.2f}s\n")
        f.write(f"- **Fastest Problem**: {min(results['timing_stats']['problem_times'], key=lambda x: x['time_seconds'])['time_formatted']} ({min(results['timing_stats']['problem_times'], key=lambda x: x['time_seconds'])['problem_id']})\n")
        f.write(f"- **Slowest Problem**: {max(results['timing_stats']['problem_times'], key=lambda x: x['time_seconds'])['time_formatted']} ({max(results['timing_stats']['problem_times'], key=lambda x: x['time_seconds'])['problem_id']})\n\n")
        
        f.write(f"## Current Evaluation Performance (5 attempts per problem)\n\n")
        
        # 1. 첫 번째 시도 정확도
        first_attempt_accuracy = initial_stats['first_attempt_correct'] / initial_stats['total'] if initial_stats['total'] > 0 else 0
        f.write(f"### 1. First Attempt Accuracy\n")
        f.write(f"- **Accuracy**: {first_attempt_accuracy:.3f} ({initial_stats['first_attempt_correct']}/{initial_stats['total']})\n")
        f.write(f"- **Description**: Success rate based on first attempt only\n\n")
        
        # 2. 5번 중 1번이라도 성공
        at_least_once_accuracy = initial_stats['at_least_once_correct'] / initial_stats['total'] if initial_stats['total'] > 0 else 0
        f.write(f"### 2. At-Least-Once Success Rate\n")
        f.write(f"- **Accuracy**: {at_least_once_accuracy:.3f} ({initial_stats['at_least_once_correct']}/{initial_stats['total']})\n")
        f.write(f"- **Description**: Problems where at least 1 out of 5 attempts succeeded\n\n")
        
        # 3. 5번 평균 정확도
        if initial_stats['total_attempts'] > 0:
            average_accuracy = initial_stats['total_successes'] / initial_stats['total_attempts']
            f.write(f"### 3. Average Success Rate (5 attempts)\n")
            f.write(f"- **Accuracy**: {average_accuracy:.3f}\n")
            f.write(f"- **Description**: Average of individual problem success rates across 5 attempts\n")
            f.write(f"- **Total Evaluations**: {initial_stats['total_attempts']} ({initial_stats['total']} × 5)\n")
            f.write(f"- **Total Successes**: {initial_stats['total_successes']}\n\n")
        
        # 기타 통계
        f.write(f"### Additional Statistics\n")
        f.write(f"- **Syntax Errors**: {initial_stats['syntax_errors']}\n")
        f.write(f"- **Evaluation Errors**: {initial_stats['evaluation_errors']}\n\n")
        
        # 단계별 성공 통계 추가
        f.write(f"## Pipeline Step Success Statistics\n")
        
        # 각 단계별 성공 개수 계산
        step_stats = {
            'problem_loading': 0,
            'llm_generation': 0,
            'solution_evaluation': 0,
            'ipo_extraction': 0,
            'input_generation': 0,
            'task_generation': 0,
            'task_evaluation': 0
        }
        
        for problem_result in results['problem_results']:
            if 'step_results' in problem_result:
                for step, success in problem_result['step_results'].items():
                    if success:
                        step_stats[step] += 1
        
        total_problems = results['initial_solution_stats']['total']
        
        f.write(f"- **Problem Loading**: {step_stats['problem_loading']}/{total_problems} ({step_stats['problem_loading']/total_problems*100:.1f}%)\n")
        f.write(f"- **LLM Generation**: {step_stats['llm_generation']}/{total_problems} ({step_stats['llm_generation']/total_problems*100:.1f}%)\n")
        f.write(f"- **Solution Evaluation**: {step_stats['solution_evaluation']}/{total_problems} ({step_stats['solution_evaluation']/total_problems*100:.1f}%)\n")
        f.write(f"- **IPO Extraction**: {step_stats['ipo_extraction']}/{total_problems} ({step_stats['ipo_extraction']/total_problems*100:.1f}%)\n")
        f.write(f"- **Input Generation**: {step_stats['input_generation']}/{total_problems} ({step_stats['input_generation']/total_problems*100:.1f}%)\n")
        f.write(f"- **Task Generation**: {step_stats['task_generation']}/{total_problems} ({step_stats['task_generation']/total_problems*100:.1f}%)\n")
        f.write(f"- **Task Evaluation**: {step_stats['task_evaluation']}/{total_problems} ({step_stats['task_evaluation']/total_problems*100:.1f}%)\n\n")
        
        # IPO 추출 통계 섹션
        ipo_stats = results['ipo_extraction_stats']
        if ipo_stats['total_attempts'] > 0:
            ipo_success_rate = ipo_stats['successful'] / ipo_stats['total_attempts']
            f.write(f"## IPO Extraction Performance\n")
            f.write(f"- **Total Attempts**: {ipo_stats['total_attempts']}\n")
            f.write(f"- **Successful**: {ipo_stats['successful']}\n")
            f.write(f"- **Failed**: {ipo_stats['failed']}\n")
            f.write(f"- **Success Rate**: {ipo_success_rate:.3f}\n\n")
            
            # IPO 추출 실패 문제 ID 목록
            if ipo_stats['failed_problem_ids']:
                f.write(f"### IPO Extraction Failed Problem IDs\n")
                for problem_id in ipo_stats['failed_problem_ids']:
                    f.write(f"- `{problem_id}`\n")
                f.write(f"\n")
        
        # Input Generation 통계 섹션 추가
        input_gen_stats = results.get('input_generation_stats', {})
        if input_gen_stats and input_gen_stats['total_attempts'] > 0:
            gen_success_rate = input_gen_stats['successful'] / input_gen_stats['total_attempts']
            f.write(f"## Input Generation Performance\n")
            f.write(f"- **Total Attempts**: {input_gen_stats['total_attempts']}\n")
            f.write(f"- **Successful**: {input_gen_stats['successful']}\n")
            f.write(f"- **Failed**: {input_gen_stats['failed']}\n")
            f.write(f"- **Success Rate**: {gen_success_rate:.3f}\n")
            f.write(f"- **Total Generated Inputs**: {input_gen_stats['total_generated_inputs']}\n")
            f.write(f"- **Average Inputs per Problem**: {input_gen_stats['average_inputs_per_problem']:.2f}\n\n")
            
            # 입력 생성이 수행된 문제 목록
            if input_gen_stats.get('problems_with_generation'):
                f.write(f"### Problems with Input Generation\n")
                f.write(f"Total: {len(input_gen_stats['problems_with_generation'])} problems\n")
                # 처음 10개만 표시
                for i, problem_id in enumerate(input_gen_stats['problems_with_generation'][:10]):
                    f.write(f"- `{problem_id}`\n")
                if len(input_gen_stats['problems_with_generation']) > 10:
                    f.write(f"- ... and {len(input_gen_stats['problems_with_generation']) - 10} more\n")
                f.write(f"\n")
        
        # 문제 ID 분류 섹션
        f.write(f"## Problem Classification\n\n")
        
        # 첫 번째 시도 기준 분류
        f.write(f"### 📈 First Attempt Results\n")
        f.write(f"- **Success**: {initial_stats['first_attempt_correct']} problems\n")
        f.write(f"- **Failure**: {len(initial_stats['first_attempt_failed_problem_ids'])} problems\n\n")
        
        # 5번 시도 종합 분류
        f.write(f"### 📊 Five-Attempt Results\n")
        f.write(f"- **At-Least-Once Success**: {initial_stats['at_least_once_correct']} problems\n")
        f.write(f"- **Never Success**: {len(initial_stats['never_success_problem_ids'])} problems\n\n")
        
        # 첫 시도 실패 문제 ID 목록
        if initial_stats['first_attempt_failed_problem_ids']:
            f.write(f"### First Attempt Failed Problem IDs\n")
            for problem_id in initial_stats['first_attempt_failed_problem_ids']:
                f.write(f"- `{problem_id}`\n")
            f.write(f"\n")
        
        # 5번 모두 실패 문제 ID 목록
        if initial_stats['never_success_problem_ids']:
            f.write(f"### Never Success Problem IDs (0/5)\n")
            for problem_id in initial_stats['never_success_problem_ids']:
                f.write(f"- `{problem_id}`\n")
            f.write(f"\n")
        
        f.write(f"## Reasoning Task Performance\n")
        f.write(f"*Note: Statistics based on problem-level average accuracy for each task type*\n\n")
        
        for task_type, stats in results['reasoning_task_stats'].items():
            if stats['total'] > 0:
                # Overall Success Rate = 전체 task의 평균 정확도
                overall_accuracy = stats['total_accuracy'] / stats['total']
                partial_count = stats['total'] - stats['accuracy_0_count'] - stats['accuracy_1_count']
                
                f.write(f"### {task_type.title()} Tasks\n")
                f.write(f"- **Total Problems**: {stats['total']} (problems that had {task_type} tasks)\n")
                f.write(f"- **Problems with >0 Avg Accuracy**: {stats['correct']}\n")
                f.write(f"- **Overall Success Rate**: {overall_accuracy:.3f}\n")
                f.write(f"- **Problems with Avg Accuracy = 0.0**: {stats['accuracy_0_count']} problems\n")
                f.write(f"- **Problems with Avg Accuracy = 1.0**: {stats['accuracy_1_count']} problems\n")
                f.write(f"- **Problems with Partial Accuracy**: {partial_count} problems\n\n")
        
        # 상세한 문제 분류 추가
        f.write(generate_detailed_classification(output_dir, args.benchmark))
        
        f.write(f"## Files\n")
        f.write(f"- **Detailed Results**: {result_file}\n")
        f.write(f"- **Summary Report**: {summary_file}\n")
        f.write(f"- **First Attempt Failed Problems**: See 'First Attempt Failed Problem IDs' section above\n")
        f.write(f"- **Never Success Problems**: See 'Never Success Problem IDs' section above\n")
        if ipo_stats['failed_problem_ids']:
            f.write(f"- **IPO Extraction Failed Problems**: See 'IPO Extraction Failed Problem IDs' section above and ipo_extraction_failed_problems.txt\n")
    
    # IPO 추출 실패 문제 ID 별도 파일로 저장
    if ipo_stats['failed_problem_ids']:
        failed_ipo_file = os.path.join(output_dir, f"ipo_extraction_failed_problems.txt")
        with open(failed_ipo_file, 'w', encoding='utf-8') as f:
            f.write(f"# IPO Extraction Failed Problems\n")
            f.write(f"# Benchmark: {args.benchmark}\n")
            f.write(f"# Model: {args.model}\n")
            f.write(f"# Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
            f.write(f"# Total Failed: {len(ipo_stats['failed_problem_ids'])}/{ipo_stats['total_attempts']}\n")
            f.write(f"# Success Rate: {(ipo_stats['successful'] / ipo_stats['total_attempts']):.3f}\n")
            f.write(f"#\n")
            for problem_id in ipo_stats['failed_problem_ids']:
                f.write(f"{problem_id}\n")
        
        logger.log_info(f"📄 IPO extraction failed problems saved: {failed_ipo_file}")
    
    logger.log_info(f"✅ Batch evaluation completed!")
    logger.log_info(f"📁 Results saved to: {output_dir}")
    logger.log_info(f"   📄 Summary report: evaluation_summary.md")
    logger.log_info(f"   📊 Statistics JSON: batch_evaluation_results.json")
    logger.log_info(f"   📂 Detailed results: {args.benchmark}/[problem_id]/")
    logger.log_info(f"      └── initial_solution/  # LLM 솔루션")
    logger.log_info(f"      └── ipo_triples/       # IPO 트리플")
    logger.log_info(f"      └── task_prompts/      # 생성된 태스크")
    logger.log_info(f"      └── llm_responses/     # LLM 응답")
    
    if ipo_stats['failed_problem_ids']:
        logger.log_info(f"📄 IPO failed problems: {len(ipo_stats['failed_problem_ids'])} problems saved to ipo_extraction_failed_problems.txt")
    
    # 모델 정리 (VLLM 올바른 종료)
    try:
        import gc
        import torch
        
        # 1. VLLM 모델 정리 (올바른 방법)
        if hasattr(model, 'llm_engine'):
            # LLMEngine의 model_executor 직접 shutdown
            if hasattr(model.llm_engine, 'model_executor'):
                logger.log_info("🔄 Shutting down VLLM model executor...")
                model.llm_engine.model_executor.shutdown()
            # 객체 참조 명시적 해제
            del model.llm_engine
        
        # 2. 모델 객체 참조 해제
        del model
        
        # 3. GPU 메모리 정리
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        
        # 4. 강제 가비지 컬렉션
        gc.collect()
        
        logger.log_info("🧹 Model cleanup completed properly")
        
    except Exception as e:
        logger.log_warning(f"⚠️ Model cleanup failed: {e}")
        
        # 백업: 강제 종료 (문제가 있을 경우에만)
        logger.log_warning("🚨 Attempting emergency cleanup...")
        try:
            import psutil
            
            # VLLM 관련 프로세스 강제 종료
            current_pid = os.getpid()
            parent = psutil.Process(current_pid)
            
            for child in parent.children(recursive=True):
                try:
                    child.terminate()
                    child.wait(timeout=2)
                except (psutil.NoSuchProcess, psutil.TimeoutExpired):
                    try:
                        child.kill()
                    except psutil.NoSuchProcess:
                        pass
            
            logger.log_warning("🚨 Emergency cleanup completed")
        except Exception as cleanup_error:
            logger.log_error(f"💥 Emergency cleanup also failed: {cleanup_error}")
            # 최후의 수단
            try:
                os._exit(0)
            except:
                pass
    
    return True


def main():
    parser = argparse.ArgumentParser(description='Batch TestTime RLVR Evaluation')
    parser.add_argument('--model', type=str, default='Qwen/Qwen2.5-7B', 
                       help='Model name to evaluate')
    parser.add_argument('--benchmark', type=str, choices=['humaneval', 'mbpp'], 
                       default='mbpp', help='Benchmark to evaluate')
    parser.add_argument('--max_problems', type=int, default=10, 
                       help='Maximum number of problems to evaluate (0 = all)')
    parser.add_argument('--gpu', type=int, default=6, help='GPU ID to use')
    parser.add_argument('--output_dir', type=str, 
                       default='./batch_results',
                       help='Output directory for results')
    parser.add_argument('--resume', action='store_true',
                       help='Resume from previously completed problems')
    parser.add_argument('--start_from', type=str, default=None,
                       help='Start from specific problem ID (e.g., Mbpp/100)')
    
    args = parser.parse_args()
    
    # GPU 설정 (Shell에서 CUDA_VISIBLE_DEVICES가 이미 설정된 경우 유지)
    if 'CUDA_VISIBLE_DEVICES' not in os.environ:
        os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
    
    print(f"🎯 CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
    print(f"🎯 Using GPU argument: {args.gpu}")
    
    # 결과 디렉토리 생성
    os.makedirs(args.output_dir, exist_ok=True)
    
    try:
        success = run_batch_evaluation(args)
        exit_code = 0 if success else 1
    except Exception as e:
        print(f"💥 Batch evaluation failed: {e}")
        traceback.print_exc()
        exit_code = 1
    
    print(f"\n🚪 Exiting with code {exit_code}")
    
    # 강제 종료 (VLLM 프로세스 완전 종료를 위해)
    try:
        os._exit(exit_code)
    except:
        sys.exit(exit_code)


if __name__ == '__main__':
    main()