--- library_name: hivex original_train_name: OceanPlasticCollection_task_0_run_id_0_train tags: - hivex - hivex-ocean-plastic-collection - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-OPC-PPO-baseline-task-0 results: - task: type: main-task name: main_task task-id: 0 dataset: name: hivex-ocean-plastic-collection type: hivex-ocean-plastic-collection metrics: - type: cumulative_reward value: 823.2983947753906 +/- 197.42713024318527 name: "Cumulative Reward" verified: true - type: global_reward value: 285.8913818359375 +/- 84.43798423128938 name: "Global Reward" verified: true - type: local_reward value: 158.69510040283203 +/- 32.16273712262643 name: "Local Reward" verified: true --- This model serves as the baseline for the **Ocean Plastic Collection** environment, trained and tested on task 0 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Ocean Plastic Collection**
Task: 0
Algorithm: PPO
Episode Length: 5000
Training max_steps: 3000000
Testing max_steps: 150000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments) [hivex-paper]: https://arxiv.org/abs/2501.04180