PyTorch
llama
File size: 2,735 Bytes
54d4efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277bbc5
54d4efb
 
 
 
 
 
 
 
 
 
 
 
277bbc5
 
 
 
 
54d4efb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
---

<div align="center">

<h3>InstructBioMol: A Multimodal LLM for Biomolecule Understanding and Design</h3>

<p align="center">
  <a href="https://arxiv.org/abs/2410.07919">Paper</a> β€’
  <a href="https://github.com/HICAI-ZJU/InstructBioMol">Project</a> β€’
  <a href="#quickstart">Quickstart</a> β€’
  <a href="#citation">Citation</a>
</p>
</div>

### Model Description

InstructBioMol is a multimodal large language model that bridges natural language with biomolecules (proteins and small molecules). It achieves any-to-any alignment between natural language, molecules, and proteins through comprehensive instruction tuning.

*For detailed information, please refer to our [paper](https://arxiv.org/abs/2410.07919) and [code repository](https://github.com/HICAI-ZJU/InstructBioMol).*
### Released Variants

| Model Name | Stage |  Multimodal| Description |
|------------|-----------| -------| -------|
| [InstructBioMol-base](https://huggingface.co/hicai-zju/InstructBioMol-base)  | Pretraining | ❎| Continual pretrained model on molecular sequences, protein sequences, and scientific literature. |
| [InstructBioMol-instruct-stage1](https://huggingface.co/hicai-zju/InstructBioMol-instruct-stage1) (*This Model*) | Instruction tuning (stage 1) | βœ… |  Stage1 instruction-tuned model with biomolecular multimodal processing capabilities. (e.g., 3D molecules/proteins) |
| [InstructBioMol-instruct](https://huggingface.co/hicai-zju/InstructBioMol-instruct) |  Instruction tuning (stage 1 and 2) |  βœ…| Fully instruction-tuned model (stage1 & stage2) with biomolecular multimodal processing capabilities (e.g., 3D molecules/proteins) |

### Training Details

**Base Architecture**: InstructBioMol-base

**Training Data**:

​1. Molecule - Natural Language Alignment:
  - 60 million data from pubchem and chebi

​2. Protein - Natural Langauge Alignment:
  - 35 million data from UniProt (Swiss-Prot and TrEMBL)

​3. Molecule - Protein Alignment:
  - 1 million data from BindingDB and Rhea


**Training Objective**: Instruction tuning


### Citation

```bibtex
@article{zhuang2025advancing,
  author       = {Xiang Zhuang and
                  Keyan Ding and
                  Tianwen Lyu and
                  Yinuo Jiang and
                  Xiaotong Li and
                  Zhuoyi Xiang and
                  Zeyuan Wang and
                  Ming Qin and
                  Kehua Feng and
                  Jike Wang and
                  Qiang Zhang and
                  Huajun Chen},
  title={Advancing biomolecular understanding and design following human instructions},
  journal={Nature Machine Intelligence},
  pages={1--14},
  year={2025},
  publisher={Nature Publishing Group UK London}
}
```