File size: 3,820 Bytes
21c5e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: bakrianoo/t5-arabic-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: results_ara_t5_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results_ara_t5_v2

This model is a fine-tuned version of [bakrianoo/t5-arabic-base](https://huggingface.co/bakrianoo/t5-arabic-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Gen Len: 19.0
- Loss: 0.0001
- Rouge1: 0.0875
- Rouge2: 0.0046
- Rougel: 0.0871
- Rougelsum: 0.0873

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:------:|:------:|:------:|:---------:|
| 5.4255        | 0.43  | 500   | 18.8641 | 0.0292          | 0.0123 | 0.0028 | 0.0122 | 0.0122    |
| 0.0975        | 0.86  | 1000  | 18.7006 | 0.0101          | 0.0146 | 0.0038 | 0.0146 | 0.0146    |
| 0.0321        | 1.29  | 1500  | 18.5583 | 0.0077          | 0.078  | 0.0046 | 0.0779 | 0.078     |
| 0.0237        | 1.71  | 2000  | 18.7994 | 0.0075          | 0.0806 | 0.0066 | 0.0809 | 0.0805    |
| 0.0182        | 2.14  | 2500  | 19.0    | 0.0072          | 0.0761 | 0.0023 | 0.0759 | 0.076     |
| 0.0148        | 2.57  | 3000  | 18.8528 | 0.0069          | 0.0952 | 0.0061 | 0.0957 | 0.0951    |
| 0.0156        | 3.0   | 3500  | 19.0    | 0.0064          | 0.0773 | 0.0036 | 0.0772 | 0.0772    |
| 0.0126        | 3.43  | 4000  | 18.5583 | 0.0060          | 0.0859 | 0.0038 | 0.0862 | 0.0862    |
| 0.0165        | 3.86  | 4500  | 18.8528 | 0.0056          | 0.0832 | 0.0075 | 0.0835 | 0.0833    |
| 0.0101        | 4.28  | 5000  | 19.0    | 0.0047          | 0.0846 | 0.0052 | 0.0853 | 0.0848    |
| 0.0089        | 4.71  | 5500  | 19.0    | 0.0022          | 0.0874 | 0.0046 | 0.0871 | 0.0873    |
| 0.0063        | 5.14  | 6000  | 19.0    | 0.0009          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0051        | 5.57  | 6500  | 19.0    | 0.0003          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0042        | 6.0   | 7000  | 19.0    | 0.0002          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0037        | 6.43  | 7500  | 19.0    | 0.0002          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0035        | 6.86  | 8000  | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.003         | 7.28  | 8500  | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0027        | 7.71  | 9000  | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0024        | 8.14  | 9500  | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0023        | 8.57  | 10000 | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0022        | 9.0   | 10500 | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.002         | 9.43  | 11000 | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |
| 0.0019        | 9.85  | 11500 | 19.0    | 0.0001          | 0.0875 | 0.0046 | 0.0871 | 0.0873    |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2