A tiny random pipeline for testing purposes based on [THUDM/CogView4-6B](https://huggingface.co/THUDM/Cogview4-6B). ```python from transformers import AutoTokenizer, GlmConfig, GlmModel from diffusers import CogView4Transformer2DModel, FlowMatchEulerDiscreteScheduler, AutoencoderKL, CogView4Pipeline tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True) config = GlmConfig(hidden_size=32, intermediate_size=8, num_hidden_layers=2, num_attention_heads=4, head_dim=8) text_encoder = GlmModel(config) transformer_kwargs = { "patch_size": 2, "in_channels": 4, "num_layers": 2, "attention_head_dim": 4, "num_attention_heads": 4, "out_channels": 4, "text_embed_dim": 32, "time_embed_dim": 8, "condition_dim": 4, } transformer = CogView4Transformer2DModel(**transformer_kwargs) vae_kwargs = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, "sample_size": 128, } vae = AutoencoderKL(**vae_kwargs) scheduler = FlowMatchEulerDiscreteScheduler() pipe = CogView4Pipeline(tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler) pipe.save_pretrained("./dump-cogview4-dummy-pipe") ```