a-r-r-o-w HF staff commited on
Commit
b5dfd91
·
verified ·
1 Parent(s): bf9a2eb

Create tokenization_chatglm.py

Browse files
Files changed (1) hide show
  1. tokenization_chatglm.py +224 -0
tokenization_chatglm.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import tiktoken
5
+ from typing import List, Optional, Union, Dict
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import PaddingStrategy
8
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
+
10
+
11
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
12
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
13
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
14
+
15
+ def __init__(
16
+ self,
17
+ vocab_file,
18
+ clean_up_tokenization_spaces=False,
19
+ **kwargs
20
+ ):
21
+ self.name = "GLM4Tokenizer"
22
+ self.vocab_file = vocab_file
23
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
24
+ self.pat_str = re.compile(pat_str)
25
+
26
+ mergeable_ranks = {}
27
+ with open(vocab_file) as f:
28
+ for line in f:
29
+ token, rank = line.strip().split()
30
+ rank = int(rank)
31
+ token = base64.b64decode(token)
32
+ mergeable_ranks[token] = rank
33
+
34
+ self.mergeable_ranks = mergeable_ranks
35
+
36
+ self.tokenizer = tiktoken.Encoding(
37
+ name="my_tokenizer",
38
+ pat_str=pat_str,
39
+ mergeable_ranks=mergeable_ranks,
40
+ special_tokens={}
41
+ )
42
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
43
+ self.n_words = len(self.decoder)
44
+
45
+ super().__init__(
46
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
47
+ **kwargs
48
+ )
49
+
50
+ @property
51
+ def vocab_size(self):
52
+ return self.n_words
53
+
54
+ def get_vocab(self):
55
+ """ Returns vocab as a dict """
56
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
57
+ vocab.update(self.added_tokens_encoder)
58
+ return vocab
59
+
60
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
61
+ """
62
+ Converts a sequence of tokens in a single string.
63
+ """
64
+ text = ""
65
+ temp = b""
66
+ for t in tokens:
67
+ if isinstance(t, int):
68
+ t = chr(t)
69
+ if isinstance(t, str):
70
+ if temp:
71
+ text += temp.decode("utf-8", errors="replace")
72
+ elif isinstance(t, bytes):
73
+ temp += t
74
+ else:
75
+ raise TypeError("token should only be of type int, bytes or str")
76
+ if temp:
77
+ text += temp.decode("utf-8", errors="replace")
78
+ return text
79
+
80
+ def _tokenize(self, text, **kwargs):
81
+ tokens = []
82
+ ids = self.tokenizer.encode(text)
83
+ for t in ids:
84
+ tokens.append(self.decoder[t])
85
+ return tokens
86
+
87
+ def _convert_token_to_id(self, token):
88
+ """ Converts a token (str) in an id using the vocab. """
89
+ return self.mergeable_ranks[token]
90
+
91
+ def _convert_id_to_token(self, index):
92
+ """Converts an index (integer) in a token (str) using the vocab."""
93
+ return self.decoder.get(index, "")
94
+
95
+ def save_vocabulary(self, save_directory, filename_prefix=None):
96
+ """
97
+ Save the vocabulary and special tokens file to a directory.
98
+
99
+ Args:
100
+ save_directory (`str`):
101
+ The directory in which to save the vocabulary.
102
+ filename_prefix (`str`, *optional*):
103
+ An optional prefix to add to the named of the saved files.
104
+
105
+ Returns:
106
+ `Tuple(str)`: Paths to the files saved.
107
+ """
108
+ if os.path.isdir(save_directory):
109
+ vocab_file = os.path.join(
110
+ save_directory, self.vocab_files_names["vocab_file"]
111
+ )
112
+ else:
113
+ vocab_file = save_directory
114
+
115
+ with open(self.vocab_file, 'rb') as fin:
116
+ proto_str = fin.read()
117
+
118
+ with open(vocab_file, "wb") as writer:
119
+ writer.write(proto_str)
120
+
121
+ return (vocab_file,)
122
+
123
+ def get_prefix_tokens(self):
124
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
125
+ return prefix_tokens
126
+
127
+ def build_single_message(self, role, metadata, message, tokenize=True):
128
+ assert role in ["system", "user", "assistant", "observation"], role
129
+ if tokenize:
130
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
131
+ disallowed_special=())
132
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
133
+ tokens = role_tokens + message_tokens
134
+ return tokens
135
+ else:
136
+ return str(f"<|{role}|>{metadata}\n{message}")
137
+
138
+ def build_inputs_with_special_tokens(
139
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
140
+ ) -> List[int]:
141
+ """
142
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
143
+ adding special tokens. A BERT sequence has the following format:
144
+
145
+ - single sequence: `[CLS] X [SEP]`
146
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
147
+
148
+ Args:
149
+ token_ids_0 (`List[int]`):
150
+ List of IDs to which the special tokens will be added.
151
+ token_ids_1 (`List[int]`, *optional*):
152
+ Optional second list of IDs for sequence pairs.
153
+
154
+ Returns:
155
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
156
+ """
157
+ prefix_tokens = self.get_prefix_tokens()
158
+ token_ids_0 = prefix_tokens + token_ids_0
159
+ if token_ids_1 is not None:
160
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
161
+ return token_ids_0
162
+
163
+ def _pad(
164
+ self,
165
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
166
+ max_length: Optional[int] = None,
167
+ padding_side: str = "left",
168
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
169
+ pad_to_multiple_of: Optional[int] = None,
170
+ return_attention_mask: Optional[bool] = None,
171
+ ) -> dict:
172
+ """
173
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
174
+
175
+ Args:
176
+ encoded_inputs:
177
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
178
+ max_length: maximum length of the returned list and optionally padding length (see below).
179
+ Will truncate by taking into account the special tokens.
180
+ padding_strategy: PaddingStrategy to use for padding.
181
+
182
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
183
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
184
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
185
+ The tokenizer padding sides are defined in self.padding_side:
186
+
187
+ - 'left': pads on the left of the sequences
188
+ - 'right': pads on the right of the sequences
189
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
190
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
191
+ `>= 7.5` (Volta).
192
+ return_attention_mask:
193
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
194
+ """
195
+ # Load from model defaults
196
+
197
+ required_input = encoded_inputs[self.model_input_names[0]]
198
+ seq_length = len(required_input)
199
+
200
+ if padding_strategy == PaddingStrategy.LONGEST:
201
+ max_length = len(required_input)
202
+
203
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
204
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
205
+
206
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
207
+
208
+ # Initialize attention mask if not present.
209
+ if "attention_mask" not in encoded_inputs:
210
+ encoded_inputs["attention_mask"] = [1] * seq_length
211
+
212
+ if "position_ids" not in encoded_inputs:
213
+ encoded_inputs["position_ids"] = list(range(seq_length))
214
+
215
+ if needs_to_be_padded:
216
+ difference = max_length - len(required_input)
217
+
218
+ if "attention_mask" in encoded_inputs:
219
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
220
+ if "position_ids" in encoded_inputs:
221
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
222
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
223
+
224
+ return encoded_inputs