heyal commited on
Commit
6dfe98e
·
1 Parent(s): 44f3d7b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -3
README.md CHANGED
@@ -4,9 +4,28 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - imdb
 
 
 
7
  model-index:
8
  - name: finetuning-sentiment-model-3000-samples
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -15,6 +34,10 @@ should probably proofread and complete it, then remove this comment. -->
15
  # finetuning-sentiment-model-3000-samples
16
 
17
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
 
 
 
 
18
 
19
  ## Model description
20
 
@@ -33,13 +56,13 @@ More information needed
33
  ### Training hyperparameters
34
 
35
  The following hyperparameters were used during training:
36
- - learning_rate: 2e-05
37
  - train_batch_size: 16
38
  - eval_batch_size: 16
39
  - seed: 42
40
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
  - lr_scheduler_type: linear
42
- - num_epochs: 2
43
 
44
  ### Training results
45
 
 
4
  - generated_from_trainer
5
  datasets:
6
  - imdb
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
  model-index:
11
  - name: finetuning-sentiment-model-3000-samples
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: imdb
18
+ type: imdb
19
+ config: plain_text
20
+ split: train
21
+ args: plain_text
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8675
26
+ - name: F1
27
+ type: f1
28
+ value: 0.8704156479217605
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
34
  # finetuning-sentiment-model-3000-samples
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.3861
39
+ - Accuracy: 0.8675
40
+ - F1: 0.8704
41
 
42
  ## Model description
43
 
 
56
  ### Training hyperparameters
57
 
58
  The following hyperparameters were used during training:
59
+ - learning_rate: 0.0002
60
  - train_batch_size: 16
61
  - eval_batch_size: 16
62
  - seed: 42
63
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
  - lr_scheduler_type: linear
65
+ - num_epochs: 3
66
 
67
  ### Training results
68