# This file is hardcoded to transparently reproduce HEARME_zh.wav # Therefore it may NOT generalize gracefully to other texts # Refer to Usage in README.md for more general usage patterns # pip install kokoro>=0.8.1 "misaki[zh]>=0.8.1" from kokoro import KModel, KPipeline from pathlib import Path import numpy as np import soundfile as sf import torch import tqdm REPO_ID = 'hexgrad/Kokoro-82M-v1.1-zh' SAMPLE_RATE = 24000 # How much silence to insert between paragraphs: 5000 is about 0.2 seconds N_ZEROS = 5000 # Whether to join sentences in paragraphs 1 and 3 JOIN_SENTENCES = True VOICE = 'zf_001' if True else 'zm_010' device = 'cuda' if torch.cuda.is_available() else 'cpu' texts = [( "Kokoro 是一系列体积虽小但功能强大的 TTS 模型。", ), ( "该模型是经过短期训练的结果,从专业数据集中添加了100名中文使用者。", "中文数据由专业数据集公司「龙猫数据」免费且无偿地提供给我们。感谢你们让这个模型成为可能。", ), ( "另外,一些众包合成英语数据也进入了训练组合:", "1小时的 Maple,美国女性。", "1小时的 Sol,另一位美国女性。", "和1小时的 Vale,一位年长的英国女性。", ), ( "由于该模型删除了许多声音,因此它并不是对其前身的严格升级,但它提前发布以收集有关新声音和标记化的反馈。", "除了中文数据集和3小时的英语之外,其余数据都留在本次训练中。", "目标是推动模型系列的发展,并最终恢复一些被遗留的声音。", ), ( "美国版权局目前的指导表明,合成数据通常不符合版权保护的资格。", "由于这些合成数据是众包的,因此模型训练师不受任何服务条款的约束。", "该 Apache 许可模式也符合 OpenAI 所宣称的广泛传播 AI 优势的使命。", "如果您愿意帮助进一步完成这一使命,请考虑为此贡献许可的音频数据。", )] if JOIN_SENTENCES: for i in (1, 3): texts[i] = [''.join(texts[i])] en_pipeline = KPipeline(lang_code='a', repo_id=REPO_ID, model=False) def en_callable(text): if text == 'Kokoro': return 'kˈOkəɹO' elif text == 'Sol': return 'sˈOl' return next(en_pipeline(text)).phonemes # HACK: Mitigate rushing caused by lack of training data beyond ~100 tokens # Simple piecewise linear fn that decreases speed as len_ps increases def speed_callable(len_ps): speed = 0.8 if len_ps <= 83: speed = 1 elif len_ps < 183: speed = 1 - (len_ps - 83) / 500 return speed * 1.1 model = KModel(repo_id=REPO_ID).to(device).eval() zh_pipeline = KPipeline(lang_code='z', repo_id=REPO_ID, model=model, en_callable=en_callable) path = Path(__file__).parent wavs = [] for paragraph in tqdm.tqdm(texts): for i, sentence in enumerate(paragraph): generator = zh_pipeline(sentence, voice=VOICE, speed=speed_callable) f = path / f'zh{len(wavs):02}.wav' result = next(generator) wav = result.audio sf.write(f, wav, SAMPLE_RATE) if i == 0 and wavs and N_ZEROS > 0: wav = np.concatenate([np.zeros(N_ZEROS), wav]) wavs.append(wav) sf.write(path / f'HEARME_{VOICE}.wav', np.concatenate(wavs), SAMPLE_RATE)