{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb99a9c1510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb99a9c15a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb99a9c1630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb99a9c16c0>", "_build": "<function ActorCriticPolicy._build at 0x7fb99a9c1750>", "forward": "<function ActorCriticPolicy.forward at 0x7fb99a9c17e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb99a9c1870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb99a9c1900>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb99a9c1990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb99a9c1a20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb99a9c1ab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb99a9c1b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb99a9bea40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1741277215880953601, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADQvbzPOhq8nXHgPSyiZz0pyIi9JXA5PgAAgD8AAIA/wEsVPpi5nj79EQi+2l4IvwNpbD4Ft/K9AAAAAAAAAABm0nc8cSznPaobuD2M0+6+hJAqO4uUtT0AAAAAAAAAAM2mVTxcw2+6RoUUPOZKJDnocD26oEkcOAAAgD8AAIA/zVSRu64ZgrpxBi02K4obMe4xW7pFzFG1AACAPwAAgD8z/487n4Wmu8oqyz01i9Y8c8KEOsaZqbsAAIA/AACAP3MmWj6lEVs/g+/UPkYGML8cmt4+uGaHPgAAAAAAAAAAmuFSPEPcFbxKux88dZrGPIfnh72Mc6I9AACAPwAAgD/N9z091GW0vIz8nr7adsa8Jh6vPXrmwD4AAIA/AACAP5osgr2C77M/2G6wvhrJaL7tQOq9Wz5lvgAAAAAAAAAAAK4wPQMCeLxOjec9o6OjPM/f0r21bYM9AACAPwAAgD8a23C9yvklPw5nnrwPNmC/u78ZviOYlTsAAAAAAAAAAJrw0LwpGDu685cjNDerdy3k6zc6JnWnswAAgD8AAIA/MxwdPaN5iT/1SiQ+D/d1v+9eXT2ik8E9AAAAAAAAAAAaEY2+uJV2P2lQEb7RJgK/f+0cv9B7frwAAAAAAAAAAE3XFz2csUS8o41+vDE5yzyzobU9tSKlvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHRSVv/BFeMAWyUS7WMAXSUR0C26QTN2TxHdX2UKGgGR0BzbiEDhcZ+aAdLvGgIR0C26QY6XBxhdX2UKGgGR0BxWFDqnm7raAdLoWgIR0C26ReUD+zddX2UKGgGR0BybO6UaAFxaAdLnmgIR0C26SEQGwA3dX2UKGgGR0BwukP1+RYBaAdLl2gIR0C26TS88La3dX2UKGgGR0BwFxld1MdtaAdLo2gIR0C26VreANG3dX2UKGgGR0BxG1Wn0kGBaAdLlmgIR0C26VuA/cFhdX2UKGgGR0BySqWkadc0aAdLrmgIR0C26XAfMfRvdX2UKGgGR0Bvnku6ErXlaAdLrWgIR0C26X1J+UhWdX2UKGgGR0Bz/ecCo0hvaAdLuGgIR0C26YDHsC1adX2UKGgGR0BzwGdrftQbaAdLu2gIR0C26Y8qJ/G3dX2UKGgGR0ByhfG4qgAZaAdLxGgIR0C26ZTVMEiddX2UKGgGR0BybJqZc9nsaAdLuGgIR0C26ZfGEPDpdX2UKGgGR0B0K5E9dNWVaAdLtWgIR0C27vTkp7TldX2UKGgGR0Bw9tYW+GoKaAdLsWgIR0C27v6nrIHUdX2UKGgGR0BwBbijtXxOaAdLrWgIR0C27w7+1jRVdX2UKGgGR0ByRus/6frbaAdLwWgIR0C27w57LMcIdX2UKGgGR0Byz4sUZeiSaAdLyWgIR0C27zLCemNzdX2UKGgGR0Bz8ax2St/4aAdLtmgIR0C27zXAZbY9dX2UKGgGR0BwIcXKr7wbaAdLp2gIR0C2703xFy7xdX2UKGgGR0BwV4NOM2m6aAdLsmgIR0C271hYeT3ZdX2UKGgGR0BxrIm4RVZLaAdLpWgIR0C272Co0hvBdX2UKGgGR0BzFxlHz6JqaAdLnWgIR0C272lk6LfldX2UKGgGR0BOnY7aIvalaAdLYGgIR0C272kWVNYbdX2UKGgGR0ByKP4UN8VpaAdLt2gIR0C2737+tKZldX2UKGgGR0BqaAavRqoIaAdN6ANoCEdAtu+HhcZ9/nV9lChoBkdAdIOJaaCtimgHS7JoCEdAtu+UqZtvXXV9lChoBkdAdGO3jdYW+GgHS7VoCEdAtu+d8iOea3V9lChoBkdActh655JK8WgHS8NoCEdAtu+hLteD4HV9lChoBkdAcWTw7kn1F2gHS6doCEdAtu+rXCj1w3V9lChoBkdAdCHLpRoAXGgHS9toCEdAtu+xOvdM03V9lChoBkdAc/ZDpC8e0WgHS8ZoCEdAtu+289Oh03V9lChoBkdAcvRdKNAC4mgHS8FoCEdAtu/lXiiqQ3V9lChoBkdAcbjL6DXe32gHS6FoCEdAtu/sadc0L3V9lChoBkdAc0qDAJswc2gHS9BoCEdAtu/2Sr5qM3V9lChoBkdAccUaA4GUwGgHS7ZoCEdAtu/2Qo1DSnV9lChoBkdAcjPrdFfAsWgHS6NoCEdAtu/+Q0XP7nV9lChoBkdAceej2i+L32gHS5poCEdAtvAJ9Vmz0HV9lChoBkdAc0B3eN1hcGgHS8BoCEdAtvAPxLCemXV9lChoBkdAcdW6oVEeAGgHS7xoCEdAtvATtShrWXV9lChoBkdAc0VAR02ca2gHS6VoCEdAtvAn5aePJnV9lChoBkdAc1GLfk3juWgHS8NoCEdAtvA15a/yoXV9lChoBkdAcMqIi1RceWgHS6loCEdAtvA3/95yEXV9lChoBkdAcoBJ1aGHpWgHS7hoCEdAtvBCB3A2ynV9lChoBkdAcLtpfQa73GgHS7BoCEdAtvBOHrQgLnV9lChoBkdAcuHHO8kD6mgHS7poCEdAtvBReE7GN3V9lChoBkdAcWpSyt3fRGgHS69oCEdAtvBTDtPYWnV9lChoBkdAcOv6Lfk3j2gHS61oCEdAtvCG8zyjHnV9lChoBkdAcbDe6qbSZ2gHS6toCEdAtvCPbM5fdHV9lChoBkdAcWHydFvyb2gHS7JoCEdAtvCWNvOyFHV9lChoBkdAcyWEovzvqmgHS8toCEdAtvCc8vEjxHV9lChoBkdAZo3gZ0jkdWgHTegDaAhHQLbwpwc5sCV1fZQoaAZHQHKDAM+eOGVoB0u9aAhHQLbwqMajveB1fZQoaAZHQHFURq46Oo5oB0uVaAhHQLbwrqbz9TB1fZQoaAZHQHKEWu1WsBBoB0uUaAhHQLbwudznzQN1fZQoaAZHQHLYrgjyFwloB0u+aAhHQLbwuLEUCaJ1fZQoaAZHQHKVjCk43m5oB0u/aAhHQLbwvQID5j91fZQoaAZHQHK94Chew9toB0vKaAhHQLbwvQ1rIo51fZQoaAZHQG9N6FEiMYNoB0umaAhHQLbwx9MK1G91fZQoaAZHQG+tCTMaCMBoB0ujaAhHQLbw24Wk8A91fZQoaAZHQHOK+10DEFZoB0u6aAhHQLbw3tU4rBl1fZQoaAZHQHHUBNZeRgZoB0uxaAhHQLbw4kuHvc91fZQoaAZHQHGwtHQQcxVoB0uvaAhHQLbw46wMYuV1fZQoaAZHQHMupzkp7TloB0vCaAhHQLbxI04BFNN1fZQoaAZHQHIJWGyon8doB0u5aAhHQLbxIw3HaOB1fZQoaAZHQHCCWWY4Qz1oB0utaAhHQLbxJLqlgtx1fZQoaAZHQHGqzZHuqm1oB0u9aAhHQLbxLBeHBUJ1fZQoaAZHQHFZ970Fr2xoB0uxaAhHQLbxMURnOB11fZQoaAZHQHHs+2AoXsRoB0uaaAhHQLbxNZRbbDd1fZQoaAZHQHDeuWSlnAZoB0u2aAhHQLbxNujRD1J1fZQoaAZHQHCoxxgiNbVoB0uzaAhHQLbxRDtw71Z1fZQoaAZHQHPqTlgc94hoB0vNaAhHQLbxT0K7ZnN1fZQoaAZHQHEzgWnCO3loB0uXaAhHQLbxVqWTouB1fZQoaAZHQHNlqKUFB6doB0vKaAhHQLbxWc4HX3B1fZQoaAZHQHNGcbrC3w1oB0u+aAhHQLbxYFvybx51fZQoaAZHQHFHd+1Bt1poB0ueaAhHQLbxY2LpA2R1fZQoaAZHQHRDwEQoTf1oB0vgaAhHQLbxbkyULUl1fZQoaAZHQHOEmeMAFPloB0vAaAhHQLbxft5D7ZZ1fZQoaAZHQHPo1VktmL9oB0vZaAhHQLbxjfdyksV1fZQoaAZHQHL1QWvbGm1oB0ugaAhHQLbxpOq//Nt1fZQoaAZHQHAwmQGOdXloB0umaAhHQLbxq6reZXx1fZQoaAZHQHLp6cmShaloB0uYaAhHQLbxsf7aZhN1fZQoaAZHQHCrXFxXGOxoB0unaAhHQLbxtYp2ECh1fZQoaAZHQHPcMHbAUL5oB0u4aAhHQLbxuzV+Zw51fZQoaAZHQHOk/Abhm5FoB0uuaAhHQLbxwRAKOT91fZQoaAZHQHOMvL1VYIVoB0vOaAhHQLbx4Rh+fAd1fZQoaAZHQHM3aQaJhv1oB0vDaAhHQLbx5vs7dSF1fZQoaAZHQHJAcW9DhLpoB0u+aAhHQLbx7ceKba11fZQoaAZHQHHa64MF2V5oB0u7aAhHQLbx8fgaWHF1fZQoaAZHQHGP2SMcZLtoB0uxaAhHQLbx81mapgl1fZQoaAZHQHI3OtbLU1BoB0uhaAhHQLbx9NtIkJN1fZQoaAZHQHL8BQ79ycVoB0vIaAhHQLbx/sgMc6x1fZQoaAZHQHLfsrEtNBZoB0vAaAhHQLbyAeJ53Tx1fZQoaAZHQHOWeruIAOtoB0utaAhHQLbyHYzzmOl1fZQoaAZHQHL7ndXT3IxoB0vBaAhHQLbyHo+Ofd11fZQoaAZHQHJDB6rvLHNoB0uZaAhHQLbyMeP7vXt1fZQoaAZHQHEUPQ0GeMBoB0ubaAhHQLbyOPIXCTF1fZQoaAZHQHMyTwH7gsNoB0u8aAhHQLbyQNnoPkJ1fZQoaAZHQHIVm38XN1RoB0vBaAhHQLbyS0m+j/N1fZQoaAZHQHLl8khRqGloB0vAaAhHQLbyUAAyVOd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVqwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC9vcHQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC9vcHQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBaMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC9vcHQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC9vcHQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBaMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.4.0-200-generic-x86_64-with-glibc2.35 # 220-Ubuntu SMP Fri Sep 27 13:19:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}} |