lunar / config.json
helper2424's picture
Basic Lunar PPO
cc36298 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a64b3409940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a64b34099e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a64b3409a80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a64b3409b20>", "_build": "<function ActorCriticPolicy._build at 0x7a64b3409bc0>", "forward": "<function ActorCriticPolicy.forward at 0x7a64b3409c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a64b3409d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a64b3409da0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a64b3409e40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a64b3409ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a64b3409f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a64b340a020>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a64b3fc2f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740039776540076062, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOZFD2PVn26bd4JuJe+x7J/82W78vsgNwAAgD8AAIA/ANCtOodktz/DehU9eSuYPnxwKDqysww9AAAAAAAAAAAGN2c+Pfk4PxbBCjzVXce+BYbGPaawWb0AAAAAAAAAACaI6D0pUFG60lmtvZthjjyHVCY8zpI8vgAAgD8AAIA/M1uau8n5bz+ciT89yrUMv7b48zzjHdm7AAAAAAAAAADGIjw+u+qrvHWOz7oTjiQ5tAUdvpu/CjoAAIA/AACAPyCXNz7OuZG8rrvUOkriG7lmIgO+TKYNugAAgD8AAIA/zYwSPvYqBTsptSu+ch5aPfYt0D3sRLi9AACAPwAAgD9al1m+31YKPpTqKjz87yi+vXHvvLKDGLsAAAAAAAAAADp1NL52e3e84gaCuwAGvblejuU9epmvOgAAgD8AAIA/GuaxPY9qUboDAFgyEOfhsTLK9rqLi9+yAACAPwAAgD8Fgom+w4tMvNNRZLrnl064d1O7Pb9mhjkAAIA/AACAPwgmpL4x56g9o+NqOuFtark528G++36fuQAAgD8AAIA/hpIevlczeTzG6K09X9JivApgCb6DhWE9AACAPwAAgD/mh5Q9ONeLPr9NyDxrF5O+NjicPO6izLwAAAAAAAAAACZ99j1SroE6/iu1vSbIELzT5Y07FaT/vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGWEt29tdmMAWyUTegDjAF0lEdAmn7KsEJSi3V9lChoBkdAb3eANoakymgHTSMBaAhHQJp/NXT3IuJ1fZQoaAZHQGApfmT1TR9oB03oA2gIR0CagMoXbdrPdX2UKGgGR0BthMMXrMTwaAdNUgNoCEdAmoDhPj4pMHV9lChoBkdAbkN3pOerdWgHS+RoCEdAmoGdU83dbnV9lChoBkdAbqUnZ00WM2gHTTgBaAhHQJqCH93r2QJ1fZQoaAZHQG5kXsPatcRoB0v2aAhHQJqCo2LpA2R1fZQoaAZHQG8PcE/0NBpoB0vYaAhHQJqDsSi/O+t1fZQoaAZHQG8dQFTvRZ5oB00uAWgIR0CahIAzHjp+dX2UKGgGR0BwNA7JW/8EaAdNJwFoCEdAmoZ/PPcBVHV9lChoBkdAboJUF0PpZGgHS/9oCEdAmuY4j8k2P3V9lChoBkdAcKwvuw5eaGgHTQ8BaAhHQJrmdiRW9151fZQoaAZHQG8lEyDZlFtoB0v1aAhHQJrnS+VTrE91fZQoaAZHQG00IkzGgjBoB00BAWgIR0Ca56rs0HhTdX2UKGgGR0Bx+wOG0u14aAdNYgFoCEdAmuiHaWX1J3V9lChoBkdAcl06guh9LGgHTQEBaAhHQJrpFcPe54J1fZQoaAZHQGwewVTJhfBoB00RAWgIR0Ca6Sjt5UtJdX2UKGgGR0BrcFcjZ+QVaAdNNwJoCEdAmukph8Yyf3V9lChoBkdAYSlrcj7hvWgHTegDaAhHQJrpjOqvNeN1fZQoaAZHQG+elEiMYMxoB0vnaAhHQJrqeHqNZNh1fZQoaAZHQHDHPgWJrL1oB00PAWgIR0Ca6u1yvLX+dX2UKGgGR0BxuLyrgflqaAdNXwFoCEdAmuxTqbBoEnV9lChoBkdAbuGApazNU2gHS/1oCEdAmuzefI0ZWXV9lChoBkdAbWdAQg9vCWgHS/RoCEdAmu84fSx7iXV9lChoBkdAcRj8IiTt9mgHS99oCEdAmvAwcT8HfXV9lChoBkdAcQ9i8WbgCWgHTQYBaAhHQJrwOqJdjXp1fZQoaAZHQHAMIm5UcXFoB00nAWgIR0Ca8E1TisGQdX2UKGgGR0BwuTylN1yOaAdNNgFoCEdAmvCVcIJJG3V9lChoBkdAcGp/3FkxymgHTQABaAhHQJrxVUS7GvR1fZQoaAZHQHAJGt+1Bt1oB00ZAWgIR0Ca8ZubqhUSdX2UKGgGR0BwRUg7o0Q9aAdNAQFoCEdAmvHBwZOzp3V9lChoBkdAYAusoUi6hGgHTegDaAhHQJrzZ3NcGC91fZQoaAZHQHAd3sPatcRoB00bAWgIR0Ca84W9US7HdX2UKGgGR0BjHn4M4LkTaAdN6ANoCEdAmvQ1K9PDYXV9lChoBkdAcDO668QI2WgHS/toCEdAmvRpv99+gHV9lChoBkdAcsK7PppvgmgHTTMBaAhHQJr0qxzJZGN1fZQoaAZHQHAtHFDOTq1oB0vXaAhHQJr22R1X/5t1fZQoaAZHQG7OMbm2b5NoB0v7aAhHQJr3DxH5Jsh1fZQoaAZHQG8EWSEDhcZoB0v6aAhHQJr3/va11GN1fZQoaAZHQG+rtPxhDw9oB00KAWgIR0Ca+KLkCFK1dX2UKGgGR0BvqP+wTufFaAdL5GgIR0Ca+QRFZxJedX2UKGgGR0BygQX531SPaAdNEAFoCEdAmvlFA7gbZXV9lChoBkdAcGZ7JW/8EWgHS/xoCEdAmvlhNM495nV9lChoBkdAbT0D4gzP8mgHS/NoCEdAmvljRhMJyHV9lChoBkdAYwxhIe5nUWgHTegDaAhHQJr8DjaPCEZ1fZQoaAZHQG7dyI55qudoB0vxaAhHQJr8nYFqzqt1fZQoaAZHQHAMvtlZowpoB00FAWgIR0Ca/MAN5MURdX2UKGgGR0Bt0ELUkOZtaAdNIQFoCEdAmvzJmZmZmnV9lChoBkdAcZrwbVBlc2gHTQMBaAhHQJr85ZKWcBl1fZQoaAZHQHAKe9FnZkFoB0vraAhHQJr+6TGHYYl1fZQoaAZHQHIiljZteldoB00AAWgIR0CbAJPyTY/WdX2UKGgGR0BtBuTq0MPSaAdNAwFoCEdAmwFT1K5CnnV9lChoBkdAa5iZDzAerGgHTT8BaAhHQJsBwN5MURF1fZQoaAZHQHFB468xsVNoB00sAWgIR0CbAzJCSidrdX2UKGgGR0BwfsCA+Y+jaAdL9GgIR0CbBZPTXrdFdX2UKGgGR0BwRjxYq5LAaAdL8GgIR0CbBZfXwsoVdX2UKGgGR0BwImKziS7oaAdNCgFoCEdAmwWnDrJKa3V9lChoBkdAcOcyHmA9V2gHS/1oCEdAmwXX1rZam3V9lChoBkdAcVkQHiWE9WgHTQ0BaAhHQJsG3CLuQZJ1fZQoaAZHQG8gXpOerdZoB0v/aAhHQJsMm/UONHZ1fZQoaAZHQGCgjBMzuWtoB03oA2gIR0CbDbl4C6pYdX2UKGgGR0BwYXnIQvpRaAdNDAFoCEdAmw5uZG8VYnV9lChoBkdAchQuf29L6GgHS/loCEdAmw/cXBP9DXV9lChoBkdAbaZDgqEvkGgHTYgBaAhHQJsQ+3nZCfJ1fZQoaAZHQGwu9Lg4wRJoB026A2gIR0CbEUBGx2SudX2UKGgGR0BweDgIhQnAaAdL5WgIR0CbEZCngpBpdX2UKGgGR0BwLhroGIKuaAdL6GgIR0CbEaSOBDohdX2UKGgGR0BxFzYVZcLSaAdL22gIR0CbEgvjfek6dX2UKGgGR0Bu/ZEH+qBFaAdL/2gIR0CbEoF2V3UydX2UKGgGR0BxcY9LYf4iaAdNRQFoCEdAmxVD+vQnhXV9lChoBkdAcRA0elsP8WgHTQIBaAhHQJsXg7KaG6B1fZQoaAZHQHA2HeFcpspoB00QAWgIR0CbGw6STyJ9dX2UKGgGR0BcFtKqXF98aAdN6ANoCEdAmxt1tGd7OXV9lChoBkdAcCyCtA9mpWgHS/xoCEdAmxuYZ2pyZXV9lChoBkdAcXpt03fhuWgHTQ8BaAhHQJscITIvJzV1fZQoaAZHQHAovlIVdopoB00JAWgIR0CbHYb1AZ88dX2UKGgGR0BwW/jU/fO2aAdNiQFoCEdAmx7xeTmnwXV9lChoBkdAbrmG21D0DmgHTTcBaAhHQJsfB4jbBXV1fZQoaAZHQHCPFDKHO8loB00DAWgIR0CbIGcUM5OrdX2UKGgGR0BvkD/ACW/raAdL9mgIR0CbIj/82rGSdX2UKGgGR0Bc2bbYbsF/aAdN6ANoCEdAmyMS0WuX/3V9lChoBkdAXkD5TIeYD2gHTegDaAhHQJsjNGz8gp11fZQoaAZHQGSJPwd8zANoB03oA2gIR0CbIzZtelbedX2UKGgGR0BwZJ5OafBfaAdL32gIR0CbJJFAmiQDdX2UKGgGR0BvvMMNMGoraAdNCAFoCEdAmyaItpVS43V9lChoBkdAbarL+PzWgGgHTT0BaAhHQJsnrB3zMA51fZQoaAZHQHFBT5O8CgdoB0v4aAhHQJsogjC53C91fZQoaAZHQG0z4BFNL15oB00yAWgIR0CbKWvoNd7fdX2UKGgGR0BuLqI7/4qPaAdNdgFoCEdAmypAcYIjW3V9lChoBkdAcJuPjn3cpWgHS/poCEdAmyt7ApKBd3V9lChoBkdAbysotthuwWgHS+doCEdAmyuX9vS+g3V9lChoBkdAbzYP1+RYBGgHS+doCEdAmyuYhpxm03V9lChoBkdAcW+VLBbfQGgHTSgBaAhHQJsroiPhhph1fZQoaAZHQGASqTKT0QNoB03oA2gIR0CbLDvd/J/5dX2UKGgGR0BxTR4ptrKvaAdNCQFoCEdAmyyciOearnV9lChoBkdAcBdHObAk9mgHS+doCEdAmyzx0ZFXrHV9lChoBkdARoXIMjNY82gHS85oCEdAmy7b+5vtMXV9lChoBkdAcFANSIgvDmgHTQkBaAhHQJsv8HiWE9N1fZQoaAZHQHBk6M72crloB00PAWgIR0CbMfHcDbJwdX2UKGgGR0BwQBVGTcIraAdNFwFoCEdAmzMuIRAbAHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}