Update README.md
Browse files
README.md
CHANGED
@@ -10,18 +10,6 @@ pipeline_tag: sentence-similarity
|
|
10 |
|
11 |
|
12 |
|
13 |
-
## Model List
|
14 |
-
The evaluation dataset is in Chinese, and we used the same language model **RoBERTa base** on different methods.
|
15 |
-
| Model | STS-B(w-avg) | ATEC | BQ | LCQMC | PAWSX | Avg. |
|
16 |
-
|:-----------------------:|:------------:|:-----------:|:----------|:-------------|:------------:|:----------:|
|
17 |
-
| BERT-Whitening | 65.27| -| -| -| -| -|
|
18 |
-
| SimBERT | 70.01| -| -| -| -| -|
|
19 |
-
| SBERT-Whitening | 71.75| -| -| -| -| -|
|
20 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 78.61| -| -| -| -| -|
|
21 |
-
| [hellonlp/simcse-base-zh](https://huggingface.co/hellonlp/simcse-roberta-base-zh) | 80.96| -| -| -| -| -|
|
22 |
-
| [hellonlp/promcse-base-zh](https://huggingface.co/hellonlp/promcse-bert-base-zh) | **81.57**| -| -| -| -| -|
|
23 |
-
|
24 |
-
|
25 |
|
26 |
## Data List
|
27 |
The following datasets are all in Chinese.
|
@@ -38,6 +26,21 @@ The following datasets are all in Chinese.
|
|
38 |
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
## Uses
|
42 |
To use the tool, first install the `promcse` package from [PyPI](https://pypi.org/project/promcse/)
|
43 |
```bash
|
|
|
10 |
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
## Data List
|
15 |
The following datasets are all in Chinese.
|
|
|
26 |
|
27 |
|
28 |
|
29 |
+
## Model List
|
30 |
+
The evaluation dataset is in Chinese, and we used the same language model **RoBERTa base** on different methods.
|
31 |
+
Considering that the test set of some data sets is small, which may lead to a large deviation in evaluation accuracy, the evaluation data here uses train, valid and test at the same time, and the final evaluation result adopts the weighted average (w-avg) method. .
|
32 |
+
| Model | STS-B(w-avg) | ATEC | BQ | LCQMC | PAWSX | Avg. |
|
33 |
+
|:-----------------------:|:------------:|:-----------:|:----------|:-------------|:------------:|:----------:|
|
34 |
+
| BERT-Whitening | 65.27| -| -| -| -| -|
|
35 |
+
| SimBERT | 70.01| -| -| -| -| -|
|
36 |
+
| SBERT-Whitening | 71.75| -| -| -| -| -|
|
37 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 78.61| -| -| -| -| -|
|
38 |
+
| [hellonlp/simcse-base-zh](https://huggingface.co/hellonlp/simcse-roberta-base-zh) | 80.96| -| -| -| -| -|
|
39 |
+
| [hellonlp/promcse-base-zh](https://huggingface.co/hellonlp/promcse-bert-base-zh) | **81.57**| -| -| -| -| -|
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
## Uses
|
45 |
To use the tool, first install the `promcse` package from [PyPI](https://pypi.org/project/promcse/)
|
46 |
```bash
|