--- base_model: - microsoft/Phi-3.5-vision-instruct --- This is the [microsoft/Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) model, converted to OpenVINO, with fp16 weights. Use OpenVINO GenAI to run inference on this model: - Install OpenVINO GenAI nightly and pillow: ``` pip install --upgrade --pre pillow openvino-genai openvino openvino-tokenizers --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly ``` - Download a test image: `curl -O "https://storage.openvinotoolkit.org/test_data/images/dog.jpg"` - Run inference: ```python import numpy as np import openvino as ov import openvino_genai from PIL import Image # Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU pipe = openvino_genai.VLMPipeline("Phi-3.5-vision-instruct-ov-fp16", "CPU") pipe.start_chat() # Setting eos_token_id to tokenizer's eos token id is necessary for Phi-3.5-vision-instruct config = openvino_genai.GenerationConfig() config.set_eos_token_id(pipe.get_tokenizer().get_eos_token_id()) config.max_new_tokens = 100 image = Image.open("dog.jpg") image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8) image_data = ov.Tensor(image_data) prompt = "Can you describe the image?" result = pipe.generate(prompt, image=image_data, generation_config=config) print(result.texts[0]) ``` See [OpenVINO GenAI repository](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#performing-visual-language-text-generation)