hbXNov commited on
Commit
3c7291d
·
verified ·
1 Parent(s): d15e9bc

Add files using upload-large-folder tool

Browse files
config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_type": "silu",
3
+ "add_faster_video": false,
4
+ "add_time_instruction": false,
5
+ "alibi": false,
6
+ "alibi_bias_max": 8.0,
7
+ "architectures": [
8
+ "LlavaLladaForMaskedDiffusion"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "attention_layer_norm": false,
12
+ "attention_layer_norm_with_affine": true,
13
+ "auto_map": {
14
+ "AutoConfig": "configuration_llada.LLaDAConfig",
15
+ "AutoModel": "modeling_llada.LLaDAModelLM",
16
+ "AutoModelForCausalLM": "modeling_llada.LLaDAModelLM"
17
+ },
18
+ "bias_for_layer_norm": false,
19
+ "block_group_size": 1,
20
+ "block_type": "llama",
21
+ "d_model": 4096,
22
+ "embedding_dropout": 0.0,
23
+ "embedding_size": 126464,
24
+ "eos_token_id": 126081,
25
+ "faster_token_stride": 10,
26
+ "flash_attention": false,
27
+ "force_sample": false,
28
+ "image_aspect_ratio": "square",
29
+ "image_crop_resolution": null,
30
+ "image_grid_pinpoints": null,
31
+ "image_split_resolution": null,
32
+ "include_bias": false,
33
+ "include_qkv_bias": false,
34
+ "init_cutoff_factor": null,
35
+ "init_device": "meta",
36
+ "init_fn": "mitchell",
37
+ "init_std": 0.02,
38
+ "input_emb_norm": false,
39
+ "layer_norm_type": "rms",
40
+ "layer_norm_with_affine": true,
41
+ "mask_token_id": 126336,
42
+ "max_sequence_length": 4096,
43
+ "mlp_hidden_size": 12288,
44
+ "mlp_ratio": 4,
45
+ "mm_hidden_size": 1152,
46
+ "mm_newline_position": "grid",
47
+ "mm_patch_merge_type": "spatial_unpad",
48
+ "mm_pooler_ratio": 2,
49
+ "mm_projector_lr": null,
50
+ "mm_projector_type": "mlp2x_gelu",
51
+ "mm_spatial_pool_mode": "bilinear",
52
+ "mm_spatial_pool_stride": null,
53
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
54
+ "mm_use_im_patch_token": false,
55
+ "mm_use_im_start_end": false,
56
+ "mm_vision_select_feature": "patch",
57
+ "mm_vision_select_layer": -2,
58
+ "mm_vision_tower": "/data/siglip-so400m-patch14-384",
59
+ "mm_vision_tower_lr": 2e-06,
60
+ "model_type": "llada",
61
+ "multi_query_attention": null,
62
+ "n_heads": 32,
63
+ "n_kv_heads": 32,
64
+ "n_layers": 32,
65
+ "pad_token_id": 126081,
66
+ "pos_skipping_range": 4096,
67
+ "precision": "amp_bf16",
68
+ "resampler_type": null,
69
+ "residual_dropout": 0.0,
70
+ "rms_norm_eps": 1e-05,
71
+ "rope": true,
72
+ "rope_full_precision": true,
73
+ "rope_theta": 500000.0,
74
+ "scale_logits": false,
75
+ "tokenizer_model_max_length": 2048,
76
+ "tokenizer_padding_side": "right",
77
+ "torch_dtype": "bfloat16",
78
+ "transformers_version": "4.50.3",
79
+ "use_cache": false,
80
+ "use_mm_proj": true,
81
+ "use_pos_skipping": false,
82
+ "vision_tower_pretrained": null,
83
+ "vocab_size": 126464,
84
+ "weight_tying": false
85
+ }
configuration_llada.py ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ LLaDA configuration
3
+ """
4
+ from transformers import AutoConfig, PretrainedConfig
5
+
6
+ from enum import Enum
7
+ from os import PathLike
8
+ from typing import Union
9
+ from dataclasses import asdict, dataclass, field
10
+ from glob import glob
11
+ from pathlib import Path
12
+ from typing import (
13
+ Any,
14
+ Dict,
15
+ Iterable,
16
+ List,
17
+ Optional,
18
+ Tuple,
19
+ Type,
20
+ TypeVar,
21
+ Union,
22
+ cast,
23
+ )
24
+
25
+
26
+ __all__ = [
27
+ "ActivationType",
28
+ "ActivationCheckpointingStrategy",
29
+ "BlockType",
30
+ "LayerNormType",
31
+ "InitFnType",
32
+ "ModelConfig",
33
+ ]
34
+
35
+ PathOrStr = Union[str, PathLike]
36
+
37
+
38
+ class StrEnum(str, Enum):
39
+ """
40
+ This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
41
+ We include this here for compatibility with older version of Python.
42
+ """
43
+
44
+ def __str__(self) -> str:
45
+ return self.value
46
+
47
+ def __repr__(self) -> str:
48
+ return f"'{str(self)}'"
49
+
50
+
51
+ class LayerNormType(StrEnum):
52
+ default = "default"
53
+ """
54
+ The default LayerNorm implementation, equivalent to PyTorch's built-in version.
55
+ """
56
+
57
+ low_precision = "low_precision"
58
+ """
59
+ A low-precision version of the default LayerNorm.
60
+ """
61
+
62
+ rms = "rms"
63
+ """
64
+ An RMSNorm implementation. When using ``torch.compile`` this is
65
+ probably the fastest implementation.
66
+ """
67
+
68
+ gemma_rms = "gemma_rms"
69
+ """
70
+ An RMSNorm implementation by gemmma. When using ``torch.compile`` this is
71
+ probably the fastest implementation.
72
+ """
73
+
74
+ amd_compatible = "amd_compatible"
75
+ """
76
+ LayerNorm implemented manually to work around an issue with ROCm.
77
+ """
78
+
79
+
80
+ class ActivationType(StrEnum):
81
+ gelu = "gelu"
82
+ relu = "relu"
83
+ silu = "silu"
84
+ swiglu = "swiglu"
85
+
86
+
87
+ class BlockType(StrEnum):
88
+ sequential = "sequential"
89
+ parallel = "parallel"
90
+
91
+ llama = "llama"
92
+ """
93
+ A block similar to the sequential block with slightly different
94
+ implementations of operations like attention to imitate the behavior of Llama.
95
+ """
96
+
97
+
98
+ class InitFnType(StrEnum):
99
+ mitchell = "mitchell"
100
+ """
101
+ The strategy suggested to us by Mitchell Wortsman from UW.
102
+ This uses a truncated normal distribution with an adaptive standard deviation that depends
103
+ on the size of the weights as well as the depth of the layer.
104
+ """
105
+
106
+ normal = "normal"
107
+ """
108
+ All weights are initialized from the same normal distribution.
109
+ """
110
+
111
+ kaiming_normal = "kaiming_normal"
112
+ """
113
+ All weights are initialized with the Kaiming method from a normal distribution.
114
+ Note this currently won't work with FSDP.
115
+ """
116
+
117
+ fan_in = "fan_in"
118
+ """
119
+ "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
120
+ is the input dimensionality of the kernel.
121
+ """
122
+
123
+ full_megatron = "full_megatron"
124
+ """
125
+ This is what metaseq calls "full megatron init". It is the init used for Llama 2.
126
+ """
127
+
128
+
129
+ @dataclass
130
+ class ModelConfig():
131
+ """
132
+ LLaDA (model) configuration.
133
+ """
134
+
135
+ # Note that the defaults for these attributes are equivalent to the base GPT2 model.
136
+
137
+ d_model: int = 768
138
+ """
139
+ The hidden size of the model.
140
+ """
141
+
142
+ n_heads: int = 12
143
+ """
144
+ The number of self-attention heads.
145
+ """
146
+
147
+ n_kv_heads: Optional[int] = None
148
+ """
149
+ The number of heads to use for keys and values. Defaults to `n_heads`.
150
+ Set this to ``None`` or ``n_heads`` for normal multi-head attention.
151
+ Set this to 1 for multi-query attention.
152
+ Set it to some in-between value for Llama2-style grouped query attention.
153
+ """
154
+
155
+ n_layers: int = 12
156
+ """
157
+ The number of layers/blocks.
158
+ """
159
+
160
+ mlp_ratio: int = 4
161
+ """
162
+ The ratio of the inner MLP dimensionality to ``d_model``.
163
+ This is only used when ``mlp_hidden_size`` is not set.
164
+ """
165
+
166
+ mlp_hidden_size: Optional[int] = None
167
+ """
168
+ Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
169
+ """
170
+
171
+ activation_type: ActivationType = ActivationType.swiglu
172
+ """
173
+ The activation function to use within the MLP layers.
174
+ """
175
+
176
+ block_type: BlockType = BlockType.sequential
177
+ """
178
+ The transformer block implementation.
179
+ """
180
+
181
+ block_group_size: int = 1
182
+ """
183
+ The number of blocks to group together into a single parent block.
184
+ This has no affect on the number of parameters in the model and is only used to wrap groups
185
+ of blocks together with a single FSDP wrapper during training.
186
+ """
187
+
188
+ alibi: bool = False
189
+ """
190
+ If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
191
+ """
192
+
193
+ alibi_bias_max: float = 8.0
194
+ """
195
+ Maximum absolute value of ALiBi bias.
196
+ """
197
+
198
+ rope: bool = False
199
+ """
200
+ Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
201
+ """
202
+
203
+ rope_full_precision: bool = True
204
+ """
205
+ If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
206
+ apply RoPE at the precision of the input.
207
+ """
208
+
209
+ flash_attention: bool = False
210
+ """
211
+ If ``True``, use ``FlashAttention``.
212
+ """
213
+
214
+ attention_dropout: float = 0.1
215
+ """
216
+ The dropout probability within the attention modules.
217
+ """
218
+
219
+ multi_query_attention: Optional[bool] = None
220
+ """
221
+ Use the Multi-Query formulation of attention used in PaLM. This reduces the number of parameters
222
+ and is more efficient during inference.
223
+ """
224
+
225
+ attention_layer_norm: bool = False
226
+ """
227
+ Apply layer norm to the keys and queries within the attention mechanism.
228
+ This can help stabilize training.
229
+ """
230
+
231
+ residual_dropout: float = 0.1
232
+ """
233
+ The dropout probability for the MLP and attention output within each block.
234
+ """
235
+
236
+ embedding_dropout: float = 0.1
237
+ """
238
+ The dropout probability for embeddings.
239
+ """
240
+
241
+ input_emb_norm: bool = False
242
+ """
243
+ An input hidden_states norm implementation by gemmma.
244
+ """
245
+
246
+ layer_norm_type: LayerNormType = LayerNormType.default
247
+ """
248
+ The layernorm implementation to use.
249
+ """
250
+
251
+ layer_norm_with_affine: bool = True
252
+ """
253
+ Whether to include bias and weight parameters for the layer norms.
254
+ This only affects layer norms that are immediately followed by a linear layer in the forward pass,
255
+ so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
256
+ to ``False``.
257
+ """
258
+
259
+ rms_norm_eps: float = 1e-05
260
+ """
261
+ The rms layernorm eps param.
262
+ """
263
+
264
+ attention_layer_norm_with_affine: bool = True
265
+ """
266
+ Toggle affine transform for the QK norms.
267
+ """
268
+
269
+ max_sequence_length: int = 1024
270
+ """
271
+ The maximum input sequence length supported by the model.
272
+ """
273
+
274
+ rope_theta: float = 10000.0
275
+ """
276
+ The rope base param.
277
+ """
278
+
279
+ include_qkv_bias: Optional[bool] = False
280
+ """
281
+ Whether or not to include bias parameters in qkv linear layers.
282
+ """
283
+
284
+ include_bias: bool = False
285
+ """
286
+ Whether or not to include bias parameters in linear layers.
287
+ In PaLM, they got rid of all bias terms because they found that large
288
+ models tend to have near 0 bias terms anyway.
289
+ """
290
+
291
+ bias_for_layer_norm: Optional[bool] = None
292
+ """
293
+ Whether or not to include bias parameters in layer norm.
294
+ This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
295
+ layer norm.
296
+ When this is None (the default), it inherits the setting from include_bias.
297
+ """
298
+
299
+ scale_logits: bool = False
300
+ """
301
+ If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
302
+ """
303
+
304
+ vocab_size: int = 50257
305
+ """
306
+ Vocabulary size of the model.
307
+ """
308
+
309
+ embedding_size: Optional[int] = 50304
310
+ """
311
+ The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
312
+ to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
313
+ next multiple of 128 that's greater than ``vocab_size`` can improve throughput
314
+ substantially.
315
+ """
316
+
317
+ weight_tying: bool = True
318
+ """
319
+ Whether to tie output linear weights to the input embedding.
320
+ """
321
+
322
+ eos_token_id: int = 50256
323
+ """
324
+ The ID of the end-of-sentence special token.
325
+ """
326
+
327
+ pad_token_id: int = 50256
328
+ """
329
+ The ID of the token to use for padding. Defaults to the ID of the EOS token.
330
+ """
331
+
332
+ mask_token_id: Optional[int] = 50256
333
+ """
334
+ The ID of the token to use for mask token. Defaults to the ID of the EOS token.
335
+ """
336
+
337
+ init_device: Optional[str] = None
338
+ """
339
+ The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
340
+ """
341
+
342
+ init_fn: InitFnType = InitFnType.normal
343
+ """
344
+ The weight initialization strategy.
345
+ """
346
+
347
+ init_std: float = 0.02
348
+ """
349
+ The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
350
+ as "normal".
351
+ """
352
+
353
+ init_cutoff_factor: Optional[float] = None
354
+ """
355
+ A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
356
+ as "normal". Setting this to None means values are not cutoff.
357
+ """
358
+
359
+ precision: Optional[str] = None
360
+ """
361
+ Precision used to train/evaluate with. You shouldn't set this directly.
362
+ See :data:`TrainConfig.precision` instead.
363
+ """
364
+
365
+ @property
366
+ def effective_n_kv_heads(self) -> int:
367
+ if self.n_kv_heads is None:
368
+ if self.multi_query_attention is True:
369
+ return 1
370
+ else:
371
+ return self.n_heads
372
+ else:
373
+ if self.multi_query_attention is None:
374
+ return self.n_kv_heads
375
+ if self.multi_query_attention:
376
+ n_kv_heads_should_be = 1
377
+ else:
378
+ n_kv_heads_should_be = self.n_heads
379
+ if self.n_kv_heads == n_kv_heads_should_be:
380
+ return n_kv_heads_should_be
381
+ else:
382
+ raise Exception(
383
+ "You can't set `multi_query_attention` and `n_kv_heads` at the same time."
384
+ )
385
+
386
+ class ActivationCheckpointingStrategy(StrEnum):
387
+ whole_layer = "whole_layer"
388
+ """
389
+ Checkpoint every transformer layer.
390
+ """
391
+
392
+ one_in_two = "one_in_two"
393
+ """
394
+ Checkpoint one in two transformer layers.
395
+ """
396
+
397
+ one_in_three = "one_in_three"
398
+ """
399
+ Checkpoint one in three transformer layers.
400
+ """
401
+
402
+ one_in_four = "one_in_four"
403
+ """
404
+ Checkpoint one in four transformer layers.
405
+ """
406
+
407
+ two_in_three = "two_in_three"
408
+ """
409
+ Checkpoint two out of every three transformer layers.
410
+ """
411
+
412
+ three_in_four = "three_in_four"
413
+ """
414
+ Checkpoint three out of four of every transformer layers.
415
+ """
416
+
417
+ four_in_five = "four_in_five"
418
+ """
419
+ Checkpoint four out of five of every transformer layers.
420
+ """
421
+
422
+ nine_in_ten = "nine_in_ten"
423
+ """
424
+ Checkpoint nine out of ten of every transformer layers.
425
+ """
426
+
427
+ fine_grained = "fine_grained"
428
+ """
429
+ Focus checkpointing on where it is cheap to recompute and saves most memory.
430
+ """
431
+
432
+
433
+ class LLaDAConfig(PretrainedConfig):
434
+ model_type = "llada"
435
+ keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
436
+
437
+ def __init__(self, use_cache: bool = False, **kwargs):
438
+ model_config = ModelConfig()
439
+ all_kwargs = model_config.__dict__
440
+ all_kwargs.update(kwargs)
441
+ all_kwargs.update({"use_cache": use_cache})
442
+ all_kwargs.update(
443
+ {
444
+ "architectures": all_kwargs.get("architectures", ["LLaDAModelLM"])
445
+ }
446
+ )
447
+ super().__init__(**all_kwargs)
448
+
449
+ @property
450
+ def num_attention_heads(self):
451
+ return self.n_heads
452
+
453
+ @property
454
+ def num_hidden_layers(self):
455
+ return self.n_layers
456
+
457
+ @property
458
+ def hidden_size(self):
459
+ return self.d_model
460
+
461
+
462
+ # Register the config class so that it is available for transformer pipelines, auto-loading etc.
463
+ AutoConfig.register("llada", LLaDAConfig)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 126080,
4
+ "eos_token_id": 126081,
5
+ "transformers_version": "4.50.3"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step321
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c4f50fa160f55a9193d227afc2c3b9a2e903e2a87325c84754db3bb18e1a1b3
3
+ size 4995589944
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c3663d9900d79a708b0f9ce3554e86186aae472de271031f45c7f95e3dc8701
3
+ size 4999819552
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cabea9e9815b1c574328cd84ee375cbc77e61dc9239da4f78dc5e15be77bd5b5
3
+ size 4999802728
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f5e7f9011f0620d1fea7b106334d6210f54f957985dad2680a5a76aebe50428
3
+ size 1874563264
model.safetensors.index.json ADDED
@@ -0,0 +1,724 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16869674048
4
+ },
5
+ "weight_map": {
6
+ "model.image_newline": "model-00001-of-00004.safetensors",
7
+ "model.mm_projector.0.bias": "model-00004-of-00004.safetensors",
8
+ "model.mm_projector.0.weight": "model-00004-of-00004.safetensors",
9
+ "model.mm_projector.2.bias": "model-00004-of-00004.safetensors",
10
+ "model.mm_projector.2.weight": "model-00004-of-00004.safetensors",
11
+ "model.transformer.blocks.0.attn_norm.weight": "model-00001-of-00004.safetensors",
12
+ "model.transformer.blocks.0.attn_out.weight": "model-00001-of-00004.safetensors",
13
+ "model.transformer.blocks.0.ff_norm.weight": "model-00001-of-00004.safetensors",
14
+ "model.transformer.blocks.0.ff_out.weight": "model-00001-of-00004.safetensors",
15
+ "model.transformer.blocks.0.ff_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.transformer.blocks.0.k_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.transformer.blocks.0.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.transformer.blocks.0.up_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.transformer.blocks.0.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.transformer.blocks.1.attn_norm.weight": "model-00001-of-00004.safetensors",
21
+ "model.transformer.blocks.1.attn_out.weight": "model-00001-of-00004.safetensors",
22
+ "model.transformer.blocks.1.ff_norm.weight": "model-00001-of-00004.safetensors",
23
+ "model.transformer.blocks.1.ff_out.weight": "model-00001-of-00004.safetensors",
24
+ "model.transformer.blocks.1.ff_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.transformer.blocks.1.k_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.transformer.blocks.1.q_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.transformer.blocks.1.up_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.transformer.blocks.1.v_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.transformer.blocks.10.attn_norm.weight": "model-00002-of-00004.safetensors",
30
+ "model.transformer.blocks.10.attn_out.weight": "model-00002-of-00004.safetensors",
31
+ "model.transformer.blocks.10.ff_norm.weight": "model-00002-of-00004.safetensors",
32
+ "model.transformer.blocks.10.ff_out.weight": "model-00002-of-00004.safetensors",
33
+ "model.transformer.blocks.10.ff_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.transformer.blocks.10.k_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.transformer.blocks.10.q_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.transformer.blocks.10.up_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.transformer.blocks.10.v_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.transformer.blocks.11.attn_norm.weight": "model-00002-of-00004.safetensors",
39
+ "model.transformer.blocks.11.attn_out.weight": "model-00002-of-00004.safetensors",
40
+ "model.transformer.blocks.11.ff_norm.weight": "model-00002-of-00004.safetensors",
41
+ "model.transformer.blocks.11.ff_out.weight": "model-00002-of-00004.safetensors",
42
+ "model.transformer.blocks.11.ff_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.transformer.blocks.11.k_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.transformer.blocks.11.q_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.transformer.blocks.11.up_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.transformer.blocks.11.v_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.transformer.blocks.12.attn_norm.weight": "model-00002-of-00004.safetensors",
48
+ "model.transformer.blocks.12.attn_out.weight": "model-00002-of-00004.safetensors",
49
+ "model.transformer.blocks.12.ff_norm.weight": "model-00002-of-00004.safetensors",
50
+ "model.transformer.blocks.12.ff_out.weight": "model-00002-of-00004.safetensors",
51
+ "model.transformer.blocks.12.ff_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.transformer.blocks.12.k_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.transformer.blocks.12.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.transformer.blocks.12.up_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.transformer.blocks.12.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.transformer.blocks.13.attn_norm.weight": "model-00002-of-00004.safetensors",
57
+ "model.transformer.blocks.13.attn_out.weight": "model-00002-of-00004.safetensors",
58
+ "model.transformer.blocks.13.ff_norm.weight": "model-00002-of-00004.safetensors",
59
+ "model.transformer.blocks.13.ff_out.weight": "model-00002-of-00004.safetensors",
60
+ "model.transformer.blocks.13.ff_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.transformer.blocks.13.k_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.transformer.blocks.13.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.transformer.blocks.13.up_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.transformer.blocks.13.v_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.transformer.blocks.14.attn_norm.weight": "model-00002-of-00004.safetensors",
66
+ "model.transformer.blocks.14.attn_out.weight": "model-00002-of-00004.safetensors",
67
+ "model.transformer.blocks.14.ff_norm.weight": "model-00002-of-00004.safetensors",
68
+ "model.transformer.blocks.14.ff_out.weight": "model-00002-of-00004.safetensors",
69
+ "model.transformer.blocks.14.ff_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.transformer.blocks.14.k_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.transformer.blocks.14.q_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.transformer.blocks.14.up_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.transformer.blocks.14.v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.transformer.blocks.15.attn_norm.weight": "model-00002-of-00004.safetensors",
75
+ "model.transformer.blocks.15.attn_out.weight": "model-00002-of-00004.safetensors",
76
+ "model.transformer.blocks.15.ff_norm.weight": "model-00002-of-00004.safetensors",
77
+ "model.transformer.blocks.15.ff_out.weight": "model-00002-of-00004.safetensors",
78
+ "model.transformer.blocks.15.ff_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.transformer.blocks.15.k_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.transformer.blocks.15.q_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.transformer.blocks.15.up_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.transformer.blocks.15.v_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.transformer.blocks.16.attn_norm.weight": "model-00002-of-00004.safetensors",
84
+ "model.transformer.blocks.16.attn_out.weight": "model-00002-of-00004.safetensors",
85
+ "model.transformer.blocks.16.ff_norm.weight": "model-00002-of-00004.safetensors",
86
+ "model.transformer.blocks.16.ff_out.weight": "model-00002-of-00004.safetensors",
87
+ "model.transformer.blocks.16.ff_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.transformer.blocks.16.k_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.transformer.blocks.16.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.transformer.blocks.16.up_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.transformer.blocks.16.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.transformer.blocks.17.attn_norm.weight": "model-00002-of-00004.safetensors",
93
+ "model.transformer.blocks.17.attn_out.weight": "model-00002-of-00004.safetensors",
94
+ "model.transformer.blocks.17.ff_norm.weight": "model-00002-of-00004.safetensors",
95
+ "model.transformer.blocks.17.ff_out.weight": "model-00002-of-00004.safetensors",
96
+ "model.transformer.blocks.17.ff_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.transformer.blocks.17.k_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.transformer.blocks.17.q_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.transformer.blocks.17.up_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.transformer.blocks.17.v_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.transformer.blocks.18.attn_norm.weight": "model-00002-of-00004.safetensors",
102
+ "model.transformer.blocks.18.attn_out.weight": "model-00002-of-00004.safetensors",
103
+ "model.transformer.blocks.18.ff_norm.weight": "model-00002-of-00004.safetensors",
104
+ "model.transformer.blocks.18.ff_out.weight": "model-00002-of-00004.safetensors",
105
+ "model.transformer.blocks.18.ff_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.transformer.blocks.18.k_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.transformer.blocks.18.q_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.transformer.blocks.18.up_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.transformer.blocks.18.v_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.transformer.blocks.19.attn_norm.weight": "model-00002-of-00004.safetensors",
111
+ "model.transformer.blocks.19.attn_out.weight": "model-00002-of-00004.safetensors",
112
+ "model.transformer.blocks.19.ff_norm.weight": "model-00002-of-00004.safetensors",
113
+ "model.transformer.blocks.19.ff_out.weight": "model-00002-of-00004.safetensors",
114
+ "model.transformer.blocks.19.ff_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.transformer.blocks.19.k_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.transformer.blocks.19.q_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.transformer.blocks.19.up_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.transformer.blocks.19.v_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.transformer.blocks.2.attn_norm.weight": "model-00001-of-00004.safetensors",
120
+ "model.transformer.blocks.2.attn_out.weight": "model-00001-of-00004.safetensors",
121
+ "model.transformer.blocks.2.ff_norm.weight": "model-00001-of-00004.safetensors",
122
+ "model.transformer.blocks.2.ff_out.weight": "model-00001-of-00004.safetensors",
123
+ "model.transformer.blocks.2.ff_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.transformer.blocks.2.k_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.transformer.blocks.2.q_proj.weight": "model-00001-of-00004.safetensors",
126
+ "model.transformer.blocks.2.up_proj.weight": "model-00001-of-00004.safetensors",
127
+ "model.transformer.blocks.2.v_proj.weight": "model-00001-of-00004.safetensors",
128
+ "model.transformer.blocks.20.attn_norm.weight": "model-00002-of-00004.safetensors",
129
+ "model.transformer.blocks.20.attn_out.weight": "model-00002-of-00004.safetensors",
130
+ "model.transformer.blocks.20.ff_norm.weight": "model-00002-of-00004.safetensors",
131
+ "model.transformer.blocks.20.ff_out.weight": "model-00002-of-00004.safetensors",
132
+ "model.transformer.blocks.20.ff_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.transformer.blocks.20.k_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.transformer.blocks.20.q_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.transformer.blocks.20.up_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.transformer.blocks.20.v_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.transformer.blocks.21.attn_norm.weight": "model-00003-of-00004.safetensors",
138
+ "model.transformer.blocks.21.attn_out.weight": "model-00003-of-00004.safetensors",
139
+ "model.transformer.blocks.21.ff_norm.weight": "model-00003-of-00004.safetensors",
140
+ "model.transformer.blocks.21.ff_out.weight": "model-00003-of-00004.safetensors",
141
+ "model.transformer.blocks.21.ff_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.transformer.blocks.21.k_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.transformer.blocks.21.q_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.transformer.blocks.21.up_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.transformer.blocks.21.v_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.transformer.blocks.22.attn_norm.weight": "model-00003-of-00004.safetensors",
147
+ "model.transformer.blocks.22.attn_out.weight": "model-00003-of-00004.safetensors",
148
+ "model.transformer.blocks.22.ff_norm.weight": "model-00003-of-00004.safetensors",
149
+ "model.transformer.blocks.22.ff_out.weight": "model-00003-of-00004.safetensors",
150
+ "model.transformer.blocks.22.ff_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.transformer.blocks.22.k_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.transformer.blocks.22.q_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.transformer.blocks.22.up_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.transformer.blocks.22.v_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.transformer.blocks.23.attn_norm.weight": "model-00003-of-00004.safetensors",
156
+ "model.transformer.blocks.23.attn_out.weight": "model-00003-of-00004.safetensors",
157
+ "model.transformer.blocks.23.ff_norm.weight": "model-00003-of-00004.safetensors",
158
+ "model.transformer.blocks.23.ff_out.weight": "model-00003-of-00004.safetensors",
159
+ "model.transformer.blocks.23.ff_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.transformer.blocks.23.k_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.transformer.blocks.23.q_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.transformer.blocks.23.up_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.transformer.blocks.23.v_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.transformer.blocks.24.attn_norm.weight": "model-00003-of-00004.safetensors",
165
+ "model.transformer.blocks.24.attn_out.weight": "model-00003-of-00004.safetensors",
166
+ "model.transformer.blocks.24.ff_norm.weight": "model-00003-of-00004.safetensors",
167
+ "model.transformer.blocks.24.ff_out.weight": "model-00003-of-00004.safetensors",
168
+ "model.transformer.blocks.24.ff_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.transformer.blocks.24.k_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.transformer.blocks.24.q_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.transformer.blocks.24.up_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.transformer.blocks.24.v_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.transformer.blocks.25.attn_norm.weight": "model-00003-of-00004.safetensors",
174
+ "model.transformer.blocks.25.attn_out.weight": "model-00003-of-00004.safetensors",
175
+ "model.transformer.blocks.25.ff_norm.weight": "model-00003-of-00004.safetensors",
176
+ "model.transformer.blocks.25.ff_out.weight": "model-00003-of-00004.safetensors",
177
+ "model.transformer.blocks.25.ff_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.transformer.blocks.25.k_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.transformer.blocks.25.q_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.transformer.blocks.25.up_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.transformer.blocks.25.v_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.transformer.blocks.26.attn_norm.weight": "model-00003-of-00004.safetensors",
183
+ "model.transformer.blocks.26.attn_out.weight": "model-00003-of-00004.safetensors",
184
+ "model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00004.safetensors",
185
+ "model.transformer.blocks.26.ff_out.weight": "model-00003-of-00004.safetensors",
186
+ "model.transformer.blocks.26.ff_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.transformer.blocks.26.k_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.transformer.blocks.26.q_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.transformer.blocks.26.up_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.transformer.blocks.26.v_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.transformer.blocks.27.attn_norm.weight": "model-00003-of-00004.safetensors",
192
+ "model.transformer.blocks.27.attn_out.weight": "model-00003-of-00004.safetensors",
193
+ "model.transformer.blocks.27.ff_norm.weight": "model-00003-of-00004.safetensors",
194
+ "model.transformer.blocks.27.ff_out.weight": "model-00003-of-00004.safetensors",
195
+ "model.transformer.blocks.27.ff_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.transformer.blocks.27.k_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.transformer.blocks.27.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.transformer.blocks.27.up_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.transformer.blocks.27.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.transformer.blocks.28.attn_norm.weight": "model-00003-of-00004.safetensors",
201
+ "model.transformer.blocks.28.attn_out.weight": "model-00003-of-00004.safetensors",
202
+ "model.transformer.blocks.28.ff_norm.weight": "model-00003-of-00004.safetensors",
203
+ "model.transformer.blocks.28.ff_out.weight": "model-00003-of-00004.safetensors",
204
+ "model.transformer.blocks.28.ff_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.transformer.blocks.28.k_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.transformer.blocks.28.q_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.transformer.blocks.28.up_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.transformer.blocks.28.v_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.transformer.blocks.29.attn_norm.weight": "model-00003-of-00004.safetensors",
210
+ "model.transformer.blocks.29.attn_out.weight": "model-00003-of-00004.safetensors",
211
+ "model.transformer.blocks.29.ff_norm.weight": "model-00003-of-00004.safetensors",
212
+ "model.transformer.blocks.29.ff_out.weight": "model-00003-of-00004.safetensors",
213
+ "model.transformer.blocks.29.ff_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.transformer.blocks.29.k_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.transformer.blocks.29.q_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.transformer.blocks.29.up_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.transformer.blocks.29.v_proj.weight": "model-00003-of-00004.safetensors",
218
+ "model.transformer.blocks.3.attn_norm.weight": "model-00001-of-00004.safetensors",
219
+ "model.transformer.blocks.3.attn_out.weight": "model-00001-of-00004.safetensors",
220
+ "model.transformer.blocks.3.ff_norm.weight": "model-00001-of-00004.safetensors",
221
+ "model.transformer.blocks.3.ff_out.weight": "model-00001-of-00004.safetensors",
222
+ "model.transformer.blocks.3.ff_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.transformer.blocks.3.k_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.transformer.blocks.3.q_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.transformer.blocks.3.up_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.transformer.blocks.3.v_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.transformer.blocks.30.attn_norm.weight": "model-00003-of-00004.safetensors",
228
+ "model.transformer.blocks.30.attn_out.weight": "model-00003-of-00004.safetensors",
229
+ "model.transformer.blocks.30.ff_norm.weight": "model-00003-of-00004.safetensors",
230
+ "model.transformer.blocks.30.ff_out.weight": "model-00003-of-00004.safetensors",
231
+ "model.transformer.blocks.30.ff_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.transformer.blocks.30.k_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.transformer.blocks.30.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.transformer.blocks.30.up_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.transformer.blocks.30.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.transformer.blocks.31.attn_norm.weight": "model-00003-of-00004.safetensors",
237
+ "model.transformer.blocks.31.attn_out.weight": "model-00003-of-00004.safetensors",
238
+ "model.transformer.blocks.31.ff_norm.weight": "model-00003-of-00004.safetensors",
239
+ "model.transformer.blocks.31.ff_out.weight": "model-00003-of-00004.safetensors",
240
+ "model.transformer.blocks.31.ff_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.transformer.blocks.31.k_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.transformer.blocks.31.q_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.transformer.blocks.31.up_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.transformer.blocks.31.v_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.transformer.blocks.4.attn_norm.weight": "model-00001-of-00004.safetensors",
246
+ "model.transformer.blocks.4.attn_out.weight": "model-00001-of-00004.safetensors",
247
+ "model.transformer.blocks.4.ff_norm.weight": "model-00001-of-00004.safetensors",
248
+ "model.transformer.blocks.4.ff_out.weight": "model-00001-of-00004.safetensors",
249
+ "model.transformer.blocks.4.ff_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.transformer.blocks.4.k_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.transformer.blocks.4.q_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.transformer.blocks.4.up_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.transformer.blocks.4.v_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.transformer.blocks.5.attn_norm.weight": "model-00001-of-00004.safetensors",
255
+ "model.transformer.blocks.5.attn_out.weight": "model-00001-of-00004.safetensors",
256
+ "model.transformer.blocks.5.ff_norm.weight": "model-00001-of-00004.safetensors",
257
+ "model.transformer.blocks.5.ff_out.weight": "model-00001-of-00004.safetensors",
258
+ "model.transformer.blocks.5.ff_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.transformer.blocks.5.k_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.transformer.blocks.5.q_proj.weight": "model-00001-of-00004.safetensors",
261
+ "model.transformer.blocks.5.up_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.transformer.blocks.5.v_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.transformer.blocks.6.attn_norm.weight": "model-00001-of-00004.safetensors",
264
+ "model.transformer.blocks.6.attn_out.weight": "model-00001-of-00004.safetensors",
265
+ "model.transformer.blocks.6.ff_norm.weight": "model-00001-of-00004.safetensors",
266
+ "model.transformer.blocks.6.ff_out.weight": "model-00001-of-00004.safetensors",
267
+ "model.transformer.blocks.6.ff_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.transformer.blocks.6.k_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.transformer.blocks.6.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.transformer.blocks.6.up_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.transformer.blocks.6.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.transformer.blocks.7.attn_norm.weight": "model-00001-of-00004.safetensors",
273
+ "model.transformer.blocks.7.attn_out.weight": "model-00001-of-00004.safetensors",
274
+ "model.transformer.blocks.7.ff_norm.weight": "model-00001-of-00004.safetensors",
275
+ "model.transformer.blocks.7.ff_out.weight": "model-00001-of-00004.safetensors",
276
+ "model.transformer.blocks.7.ff_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.transformer.blocks.7.k_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.transformer.blocks.7.q_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.transformer.blocks.7.up_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.transformer.blocks.7.v_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.transformer.blocks.8.attn_norm.weight": "model-00001-of-00004.safetensors",
282
+ "model.transformer.blocks.8.attn_out.weight": "model-00001-of-00004.safetensors",
283
+ "model.transformer.blocks.8.ff_norm.weight": "model-00001-of-00004.safetensors",
284
+ "model.transformer.blocks.8.ff_out.weight": "model-00001-of-00004.safetensors",
285
+ "model.transformer.blocks.8.ff_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.transformer.blocks.8.k_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.transformer.blocks.8.q_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.transformer.blocks.8.up_proj.weight": "model-00001-of-00004.safetensors",
289
+ "model.transformer.blocks.8.v_proj.weight": "model-00001-of-00004.safetensors",
290
+ "model.transformer.blocks.9.attn_norm.weight": "model-00002-of-00004.safetensors",
291
+ "model.transformer.blocks.9.attn_out.weight": "model-00001-of-00004.safetensors",
292
+ "model.transformer.blocks.9.ff_norm.weight": "model-00002-of-00004.safetensors",
293
+ "model.transformer.blocks.9.ff_out.weight": "model-00002-of-00004.safetensors",
294
+ "model.transformer.blocks.9.ff_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.transformer.blocks.9.k_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.transformer.blocks.9.q_proj.weight": "model-00002-of-00004.safetensors",
297
+ "model.transformer.blocks.9.up_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.transformer.blocks.9.v_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.transformer.ff_out.weight": "model-00004-of-00004.safetensors",
300
+ "model.transformer.ln_f.weight": "model-00001-of-00004.safetensors",
301
+ "model.transformer.wte.weight": "model-00001-of-00004.safetensors",
302
+ "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00004-of-00004.safetensors",
303
+ "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
304
+ "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
305
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
306
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
307
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
308
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
309
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
310
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
311
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
312
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
313
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
314
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
315
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
316
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
317
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
318
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
319
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
320
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
321
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
322
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
323
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
324
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
325
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
326
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
327
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
328
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
329
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
330
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
332
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
333
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
334
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
336
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
337
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
338
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
339
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
340
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
341
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
342
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
343
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
344
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
345
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
346
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
347
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
348
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
349
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
350
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
351
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
352
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
353
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
354
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
355
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
356
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
357
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
358
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
359
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
360
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
361
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
362
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
363
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
364
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
365
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
366
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
367
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
368
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
369
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
370
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
371
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
372
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
373
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
374
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
375
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
376
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
377
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
378
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
379
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
380
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
381
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
382
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
383
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
384
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
385
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
386
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
387
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
388
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
389
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
390
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
391
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
392
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
393
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
394
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
395
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
396
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
397
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
398
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
399
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
400
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
401
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
402
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
403
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
404
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
405
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
406
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
407
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
408
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
409
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
410
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
411
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
412
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
413
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
414
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
415
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
416
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
417
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
418
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
419
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
420
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
421
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
422
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
423
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
424
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
425
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
426
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
427
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
428
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
429
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
430
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
431
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
432
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
433
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
434
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
435
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
436
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
437
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
438
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
439
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
440
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
441
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
442
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
443
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
444
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
445
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
446
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
447
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
448
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
449
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
450
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
451
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
452
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
453
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
454
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
455
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
456
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
457
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
458
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
459
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
460
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
461
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
462
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
463
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
464
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
465
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
466
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
467
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
468
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
469
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
470
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
471
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
472
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
473
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
474
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
475
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
476
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
477
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
478
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
479
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
480
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
481
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
482
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
483
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
484
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
485
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
486
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
487
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
488
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
489
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
490
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
491
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
492
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
493
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
494
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
495
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
496
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
497
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
498
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
499
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
500
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
501
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
502
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
503
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
504
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
505
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
506
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
507
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
508
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
509
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
510
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
511
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
512
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
513
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
514
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
515
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
516
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
517
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
518
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
519
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
520
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
521
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
522
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
523
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
524
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
525
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
526
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
527
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
528
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
529
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
530
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
531
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
532
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
533
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
534
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
535
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
536
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
537
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
538
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
539
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
540
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
541
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
542
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
543
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
544
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
545
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
546
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
547
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
548
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
549
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
550
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
551
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
552
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
553
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
554
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
555
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
556
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
557
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
558
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
559
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
560
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
561
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
562
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
563
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
564
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
565
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
566
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
567
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
568
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
569
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
570
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
571
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
572
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
573
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
574
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
575
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
576
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
577
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
578
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
579
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
580
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
581
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
582
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
583
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
584
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
585
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
586
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
587
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
588
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
589
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
590
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
591
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
592
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
593
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
594
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
595
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
596
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
597
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
598
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
599
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
600
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
601
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
602
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
603
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
604
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
605
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
606
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
607
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
608
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
609
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
610
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
611
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
612
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
613
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
614
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
615
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
616
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
617
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
618
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
619
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
620
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
621
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
622
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
623
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
624
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
625
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
626
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
627
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
628
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
629
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
630
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
631
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
632
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
633
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
634
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
635
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
636
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
637
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
638
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
639
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
640
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
641
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
642
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
643
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
644
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
645
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
646
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
647
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
648
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
649
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
650
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
651
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
652
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
653
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
654
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
655
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
656
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
657
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
658
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
659
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
660
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
661
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
662
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
663
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
664
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
665
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
666
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
667
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
668
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
669
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
670
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
671
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
672
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
673
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
674
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
675
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
676
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
677
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
678
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
679
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
680
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
681
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
682
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
683
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
684
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
685
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
686
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
687
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
688
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
689
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
690
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
691
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
692
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
693
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
694
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
695
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
696
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
697
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
698
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
699
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
700
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
701
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
702
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
703
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
704
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
705
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
706
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
707
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
708
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
709
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
710
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
711
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
712
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
713
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
714
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
715
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
716
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
717
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
718
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
719
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
720
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
721
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
722
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors"
723
+ }
724
+ }
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b64c779616b4447b27dc70d231d96bd46384376b4aff094da11d9056000068
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<role>",
4
+ "</role>",
5
+ "<|arithmetic_start|>",
6
+ "<|arithmetic_end|>",
7
+ "<|number_start|>",
8
+ "<|number_end|>"
9
+ ],
10
+ "bos_token": {
11
+ "content": "<|startoftext|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "cls_token": {
18
+ "content": "[CLS]",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "eos_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "pad_token": {
32
+ "content": "<|endoftext|>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "126080": {
6
+ "content": "<|startoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "126081": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "126082": {
22
+ "content": "[CLS]",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "126083": {
30
+ "content": "[gMASK]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "126084": {
38
+ "content": "<|reserved_token_0|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "126085": {
46
+ "content": "<|reserved_token_1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "126086": {
54
+ "content": "<|reserved_token_2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "126087": {
62
+ "content": "<|reserved_token_3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "126088": {
70
+ "content": "<|reserved_token_4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "126089": {
78
+ "content": "<|reserved_token_5|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "126090": {
86
+ "content": "<|reserved_token_6|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "126091": {
94
+ "content": "<|reserved_token_7|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "126092": {
102
+ "content": "<|reserved_token_8|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "126093": {
110
+ "content": "<|reserved_token_9|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "126094": {
118
+ "content": "<|reserved_token_10|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "126095": {
126
+ "content": "<|reserved_token_11|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "126096": {
134
+ "content": "<|reserved_token_12|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "126097": {
142
+ "content": "<|reserved_token_13|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "126098": {
150
+ "content": "<|reserved_token_14|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "126099": {
158
+ "content": "<|reserved_token_15|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "126100": {
166
+ "content": "<|reserved_token_16|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "126101": {
174
+ "content": "<|reserved_token_17|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "126102": {
182
+ "content": "<|reserved_token_18|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "126103": {
190
+ "content": "<|reserved_token_19|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "126104": {
198
+ "content": "<|reserved_token_20|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "126105": {
206
+ "content": "<|reserved_token_21|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "126106": {
214
+ "content": "<|reserved_token_22|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "126107": {
222
+ "content": "<|reserved_token_23|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "126108": {
230
+ "content": "<|reserved_token_24|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "126109": {
238
+ "content": "<|reserved_token_25|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "126110": {
246
+ "content": "<|reserved_token_26|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "126111": {
254
+ "content": "<|reserved_token_27|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "126112": {
262
+ "content": "<|reserved_token_28|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "126113": {
270
+ "content": "<|reserved_token_29|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "126114": {
278
+ "content": "<|reserved_token_30|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "126115": {
286
+ "content": "<|reserved_token_31|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "126116": {
294
+ "content": "<|reserved_token_32|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "126117": {
302
+ "content": "<|reserved_token_33|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "126118": {
310
+ "content": "<|reserved_token_34|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "126119": {
318
+ "content": "<|reserved_token_35|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "126120": {
326
+ "content": "<|reserved_token_36|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "126121": {
334
+ "content": "<|reserved_token_37|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "126122": {
342
+ "content": "<|reserved_token_38|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "126123": {
350
+ "content": "<|reserved_token_39|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "126124": {
358
+ "content": "<|reserved_token_40|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ },
365
+ "126125": {
366
+ "content": "<|reserved_token_41|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": true
372
+ },
373
+ "126126": {
374
+ "content": "<|reserved_token_42|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": true
380
+ },
381
+ "126127": {
382
+ "content": "<|reserved_token_43|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": true
388
+ },
389
+ "126128": {
390
+ "content": "<|reserved_token_44|>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": true
396
+ },
397
+ "126129": {
398
+ "content": "<|reserved_token_45|>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": true
404
+ },
405
+ "126130": {
406
+ "content": "<|reserved_token_46|>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": true
412
+ },
413
+ "126131": {
414
+ "content": "<|reserved_token_47|>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": true
420
+ },
421
+ "126132": {
422
+ "content": "<|reserved_token_48|>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": true
428
+ },
429
+ "126133": {
430
+ "content": "<|reserved_token_49|>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": true
436
+ },
437
+ "126134": {
438
+ "content": "<|reserved_token_50|>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": true
444
+ },
445
+ "126135": {
446
+ "content": "<|reserved_token_51|>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": true
452
+ },
453
+ "126136": {
454
+ "content": "<|reserved_token_52|>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": true
460
+ },
461
+ "126137": {
462
+ "content": "<|reserved_token_53|>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": true
468
+ },
469
+ "126138": {
470
+ "content": "<|reserved_token_54|>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": true
476
+ },
477
+ "126139": {
478
+ "content": "<|reserved_token_55|>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": true
484
+ },
485
+ "126140": {
486
+ "content": "<|reserved_token_56|>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": true
492
+ },
493
+ "126141": {
494
+ "content": "<|reserved_token_57|>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": true
500
+ },
501
+ "126142": {
502
+ "content": "<|reserved_token_58|>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": true
508
+ },
509
+ "126143": {
510
+ "content": "<|reserved_token_59|>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": true
516
+ },
517
+ "126144": {
518
+ "content": "<|reserved_token_60|>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": true
524
+ },
525
+ "126145": {
526
+ "content": "<|reserved_token_61|>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": true
532
+ },
533
+ "126146": {
534
+ "content": "<|reserved_token_62|>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": true
540
+ },
541
+ "126147": {
542
+ "content": "<|reserved_token_63|>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": true
548
+ },
549
+ "126148": {
550
+ "content": "<|reserved_token_64|>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": true
556
+ },
557
+ "126149": {
558
+ "content": "<|reserved_token_65|>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": true
564
+ },
565
+ "126150": {
566
+ "content": "<|reserved_token_66|>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": true
572
+ },
573
+ "126151": {
574
+ "content": "<|reserved_token_67|>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": true
580
+ },
581
+ "126152": {
582
+ "content": "<|reserved_token_68|>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": true
588
+ },
589
+ "126153": {
590
+ "content": "<|reserved_token_69|>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": true
596
+ },
597
+ "126154": {
598
+ "content": "<|reserved_token_70|>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": true
604
+ },
605
+ "126155": {
606
+ "content": "<|reserved_token_71|>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": true
612
+ },
613
+ "126156": {
614
+ "content": "<|reserved_token_72|>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": true
620
+ },
621
+ "126157": {
622
+ "content": "<|reserved_token_73|>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": true
628
+ },
629
+ "126158": {
630
+ "content": "<|reserved_token_74|>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": true
636
+ },
637
+ "126159": {
638
+ "content": "<|reserved_token_75|>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": true
644
+ },
645
+ "126160": {
646
+ "content": "<|reserved_token_76|>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": true
652
+ },
653
+ "126161": {
654
+ "content": "<|reserved_token_77|>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": true
660
+ },
661
+ "126162": {
662
+ "content": "<|reserved_token_78|>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": true
668
+ },
669
+ "126163": {
670
+ "content": "<|reserved_token_79|>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": true
676
+ },
677
+ "126164": {
678
+ "content": "<|reserved_token_80|>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": true
684
+ },
685
+ "126165": {
686
+ "content": "<|reserved_token_81|>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": true
692
+ },
693
+ "126166": {
694
+ "content": "<|reserved_token_82|>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": true
700
+ },
701
+ "126167": {
702
+ "content": "<|reserved_token_83|>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": true
708
+ },
709
+ "126168": {
710
+ "content": "<|reserved_token_84|>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": true
716
+ },
717
+ "126169": {
718
+ "content": "<|reserved_token_85|>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": true
724
+ },
725
+ "126170": {
726
+ "content": "<|reserved_token_86|>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": true
732
+ },
733
+ "126171": {
734
+ "content": "<|reserved_token_87|>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": true
740
+ },
741
+ "126172": {
742
+ "content": "<|reserved_token_88|>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": true
748
+ },
749
+ "126173": {
750
+ "content": "<|reserved_token_89|>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": true
756
+ },
757
+ "126174": {
758
+ "content": "<|reserved_token_90|>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": true
764
+ },
765
+ "126175": {
766
+ "content": "<|reserved_token_91|>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": true
772
+ },
773
+ "126176": {
774
+ "content": "<|reserved_token_92|>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": true
780
+ },
781
+ "126177": {
782
+ "content": "<|reserved_token_93|>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": true
788
+ },
789
+ "126178": {
790
+ "content": "<|reserved_token_94|>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": true
796
+ },
797
+ "126179": {
798
+ "content": "<|reserved_token_95|>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": true
804
+ },
805
+ "126180": {
806
+ "content": "<|reserved_token_96|>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": true
812
+ },
813
+ "126181": {
814
+ "content": "<|reserved_token_97|>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": true
820
+ },
821
+ "126182": {
822
+ "content": "<|reserved_token_98|>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": true
828
+ },
829
+ "126183": {
830
+ "content": "<|reserved_token_99|>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": true
836
+ },
837
+ "126184": {
838
+ "content": "<|reserved_token_100|>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": true
844
+ },
845
+ "126185": {
846
+ "content": "<|reserved_token_101|>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": true
852
+ },
853
+ "126186": {
854
+ "content": "<|reserved_token_102|>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "126187": {
862
+ "content": "<|reserved_token_103|>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "126188": {
870
+ "content": "<|reserved_token_104|>",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": true
876
+ },
877
+ "126189": {
878
+ "content": "<|reserved_token_105|>",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": true
884
+ },
885
+ "126190": {
886
+ "content": "<|reserved_token_106|>",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": true
892
+ },
893
+ "126191": {
894
+ "content": "<|reserved_token_107|>",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": true
900
+ },
901
+ "126192": {
902
+ "content": "<|reserved_token_108|>",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": true
908
+ },
909
+ "126193": {
910
+ "content": "<|reserved_token_109|>",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": true
916
+ },
917
+ "126194": {
918
+ "content": "<|reserved_token_110|>",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": true
924
+ },
925
+ "126195": {
926
+ "content": "<|reserved_token_111|>",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": true
932
+ },
933
+ "126196": {
934
+ "content": "<|reserved_token_112|>",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": true
940
+ },
941
+ "126197": {
942
+ "content": "<|reserved_token_113|>",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": true
948
+ },
949
+ "126198": {
950
+ "content": "<|reserved_token_114|>",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": true
956
+ },
957
+ "126199": {
958
+ "content": "<|reserved_token_115|>",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": true
964
+ },
965
+ "126200": {
966
+ "content": "<|reserved_token_116|>",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": true
972
+ },
973
+ "126201": {
974
+ "content": "<|reserved_token_117|>",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": true
980
+ },
981
+ "126202": {
982
+ "content": "<|reserved_token_118|>",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": true
988
+ },
989
+ "126203": {
990
+ "content": "<|reserved_token_119|>",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": true
996
+ },
997
+ "126204": {
998
+ "content": "<|reserved_token_120|>",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": true
1004
+ },
1005
+ "126205": {
1006
+ "content": "<|reserved_token_121|>",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": true
1012
+ },
1013
+ "126206": {
1014
+ "content": "<|reserved_token_122|>",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": true
1020
+ },
1021
+ "126207": {
1022
+ "content": "<|reserved_token_123|>",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": true
1028
+ },
1029
+ "126208": {
1030
+ "content": "<|reserved_token_124|>",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": true
1036
+ },
1037
+ "126209": {
1038
+ "content": "<|reserved_token_125|>",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": true
1044
+ },
1045
+ "126210": {
1046
+ "content": "<|reserved_token_126|>",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": true
1052
+ },
1053
+ "126211": {
1054
+ "content": "<|reserved_token_127|>",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": true
1060
+ },
1061
+ "126212": {
1062
+ "content": "<|reserved_token_128|>",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": true
1068
+ },
1069
+ "126213": {
1070
+ "content": "<|reserved_token_129|>",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": true
1076
+ },
1077
+ "126214": {
1078
+ "content": "<|reserved_token_130|>",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": true
1084
+ },
1085
+ "126215": {
1086
+ "content": "<|reserved_token_131|>",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": true
1092
+ },
1093
+ "126216": {
1094
+ "content": "<|reserved_token_132|>",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": true
1100
+ },
1101
+ "126217": {
1102
+ "content": "<|reserved_token_133|>",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": true
1108
+ },
1109
+ "126218": {
1110
+ "content": "<|reserved_token_134|>",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": true
1116
+ },
1117
+ "126219": {
1118
+ "content": "<|reserved_token_135|>",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": true
1124
+ },
1125
+ "126220": {
1126
+ "content": "<|reserved_token_136|>",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": true
1132
+ },
1133
+ "126221": {
1134
+ "content": "<|reserved_token_137|>",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": true
1140
+ },
1141
+ "126222": {
1142
+ "content": "<|reserved_token_138|>",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": true
1148
+ },
1149
+ "126223": {
1150
+ "content": "<|reserved_token_139|>",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": true
1156
+ },
1157
+ "126224": {
1158
+ "content": "<|reserved_token_140|>",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": true
1164
+ },
1165
+ "126225": {
1166
+ "content": "<|reserved_token_141|>",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": true
1172
+ },
1173
+ "126226": {
1174
+ "content": "<|reserved_token_142|>",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": true
1180
+ },
1181
+ "126227": {
1182
+ "content": "<|reserved_token_143|>",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": true
1188
+ },
1189
+ "126228": {
1190
+ "content": "<|reserved_token_144|>",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": true
1196
+ },
1197
+ "126229": {
1198
+ "content": "<|reserved_token_145|>",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": true
1204
+ },
1205
+ "126230": {
1206
+ "content": "<|reserved_token_146|>",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": true
1212
+ },
1213
+ "126231": {
1214
+ "content": "<|reserved_token_147|>",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": true
1220
+ },
1221
+ "126232": {
1222
+ "content": "<|reserved_token_148|>",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": true
1228
+ },
1229
+ "126233": {
1230
+ "content": "<|reserved_token_149|>",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": true
1236
+ },
1237
+ "126234": {
1238
+ "content": "<|reserved_token_150|>",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": true
1244
+ },
1245
+ "126235": {
1246
+ "content": "<|reserved_token_151|>",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": true
1252
+ },
1253
+ "126236": {
1254
+ "content": "<|reserved_token_152|>",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": true
1260
+ },
1261
+ "126237": {
1262
+ "content": "<|reserved_token_153|>",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": true
1268
+ },
1269
+ "126238": {
1270
+ "content": "<|reserved_token_154|>",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": true
1276
+ },
1277
+ "126239": {
1278
+ "content": "<|reserved_token_155|>",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": true
1284
+ },
1285
+ "126240": {
1286
+ "content": "<|reserved_token_156|>",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": true
1292
+ },
1293
+ "126241": {
1294
+ "content": "<|reserved_token_157|>",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": true
1300
+ },
1301
+ "126242": {
1302
+ "content": "<|reserved_token_158|>",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": true
1308
+ },
1309
+ "126243": {
1310
+ "content": "<|reserved_token_159|>",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": true
1316
+ },
1317
+ "126244": {
1318
+ "content": "<|reserved_token_160|>",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": true
1324
+ },
1325
+ "126245": {
1326
+ "content": "<|reserved_token_161|>",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": true
1332
+ },
1333
+ "126246": {
1334
+ "content": "<|reserved_token_162|>",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": true
1340
+ },
1341
+ "126247": {
1342
+ "content": "<|reserved_token_163|>",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": true
1348
+ },
1349
+ "126248": {
1350
+ "content": "<|reserved_token_164|>",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": true
1356
+ },
1357
+ "126249": {
1358
+ "content": "<|reserved_token_165|>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": true
1364
+ },
1365
+ "126250": {
1366
+ "content": "<|reserved_token_166|>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": true
1372
+ },
1373
+ "126251": {
1374
+ "content": "<|reserved_token_167|>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": true
1380
+ },
1381
+ "126252": {
1382
+ "content": "<|reserved_token_168|>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": true
1388
+ },
1389
+ "126253": {
1390
+ "content": "<|reserved_token_169|>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": true
1396
+ },
1397
+ "126254": {
1398
+ "content": "<|reserved_token_170|>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": true
1404
+ },
1405
+ "126255": {
1406
+ "content": "<|reserved_token_171|>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": true
1412
+ },
1413
+ "126256": {
1414
+ "content": "<|reserved_token_172|>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": true
1420
+ },
1421
+ "126257": {
1422
+ "content": "<|reserved_token_173|>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": true
1428
+ },
1429
+ "126258": {
1430
+ "content": "<|reserved_token_174|>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": true
1436
+ },
1437
+ "126259": {
1438
+ "content": "<|reserved_token_175|>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": true
1444
+ },
1445
+ "126260": {
1446
+ "content": "<|reserved_token_176|>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": true
1452
+ },
1453
+ "126261": {
1454
+ "content": "<|reserved_token_177|>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": true
1460
+ },
1461
+ "126262": {
1462
+ "content": "<|reserved_token_178|>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": true
1468
+ },
1469
+ "126263": {
1470
+ "content": "<|reserved_token_179|>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": true
1476
+ },
1477
+ "126264": {
1478
+ "content": "<|reserved_token_180|>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": true
1484
+ },
1485
+ "126265": {
1486
+ "content": "<|reserved_token_181|>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": true
1492
+ },
1493
+ "126266": {
1494
+ "content": "<|reserved_token_182|>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": true
1500
+ },
1501
+ "126267": {
1502
+ "content": "<|reserved_token_183|>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": true
1508
+ },
1509
+ "126268": {
1510
+ "content": "<|reserved_token_184|>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": true
1516
+ },
1517
+ "126269": {
1518
+ "content": "<|reserved_token_185|>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": true
1524
+ },
1525
+ "126270": {
1526
+ "content": "<|reserved_token_186|>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": true
1532
+ },
1533
+ "126271": {
1534
+ "content": "<|reserved_token_187|>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": true
1540
+ },
1541
+ "126272": {
1542
+ "content": "<|reserved_token_188|>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": true
1548
+ },
1549
+ "126273": {
1550
+ "content": "<|reserved_token_189|>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": true
1556
+ },
1557
+ "126274": {
1558
+ "content": "<|reserved_token_190|>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": true
1564
+ },
1565
+ "126275": {
1566
+ "content": "<|reserved_token_191|>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": true
1572
+ },
1573
+ "126276": {
1574
+ "content": "<|reserved_token_192|>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": true
1580
+ },
1581
+ "126277": {
1582
+ "content": "<|reserved_token_193|>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": true
1588
+ },
1589
+ "126278": {
1590
+ "content": "<|reserved_token_194|>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": true
1596
+ },
1597
+ "126279": {
1598
+ "content": "<|reserved_token_195|>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": true
1604
+ },
1605
+ "126280": {
1606
+ "content": "<|reserved_token_196|>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": true
1612
+ },
1613
+ "126281": {
1614
+ "content": "<|reserved_token_197|>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": true
1620
+ },
1621
+ "126282": {
1622
+ "content": "<|reserved_token_198|>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": true
1628
+ },
1629
+ "126283": {
1630
+ "content": "<|reserved_token_199|>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": true
1636
+ },
1637
+ "126284": {
1638
+ "content": "<|reserved_token_200|>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": true
1644
+ },
1645
+ "126285": {
1646
+ "content": "<|reserved_token_201|>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": true
1652
+ },
1653
+ "126286": {
1654
+ "content": "<|reserved_token_202|>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": true
1660
+ },
1661
+ "126287": {
1662
+ "content": "<|reserved_token_203|>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": true
1668
+ },
1669
+ "126288": {
1670
+ "content": "<|reserved_token_204|>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": true
1676
+ },
1677
+ "126289": {
1678
+ "content": "<|reserved_token_205|>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": true
1684
+ },
1685
+ "126290": {
1686
+ "content": "<|reserved_token_206|>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": true
1692
+ },
1693
+ "126291": {
1694
+ "content": "<|reserved_token_207|>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": true
1700
+ },
1701
+ "126292": {
1702
+ "content": "<|reserved_token_208|>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": true
1708
+ },
1709
+ "126293": {
1710
+ "content": "<|reserved_token_209|>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": true
1716
+ },
1717
+ "126294": {
1718
+ "content": "<|reserved_token_210|>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": true
1724
+ },
1725
+ "126295": {
1726
+ "content": "<|reserved_token_211|>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": true
1732
+ },
1733
+ "126296": {
1734
+ "content": "<|reserved_token_212|>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": true
1740
+ },
1741
+ "126297": {
1742
+ "content": "<|reserved_token_213|>",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": true
1748
+ },
1749
+ "126298": {
1750
+ "content": "<|reserved_token_214|>",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": true
1756
+ },
1757
+ "126299": {
1758
+ "content": "<|reserved_token_215|>",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": true
1764
+ },
1765
+ "126300": {
1766
+ "content": "<|reserved_token_216|>",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": true
1772
+ },
1773
+ "126301": {
1774
+ "content": "<|reserved_token_217|>",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": true
1780
+ },
1781
+ "126302": {
1782
+ "content": "<|reserved_token_218|>",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": true
1788
+ },
1789
+ "126303": {
1790
+ "content": "<|reserved_token_219|>",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": true
1796
+ },
1797
+ "126304": {
1798
+ "content": "<|reserved_token_220|>",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": true
1804
+ },
1805
+ "126305": {
1806
+ "content": "<|reserved_token_221|>",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": true
1812
+ },
1813
+ "126306": {
1814
+ "content": "<|reserved_token_222|>",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": true
1820
+ },
1821
+ "126307": {
1822
+ "content": "<|reserved_token_223|>",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": true
1828
+ },
1829
+ "126308": {
1830
+ "content": "<|reserved_token_224|>",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": true
1836
+ },
1837
+ "126309": {
1838
+ "content": "<|reserved_token_225|>",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": true
1844
+ },
1845
+ "126310": {
1846
+ "content": "<|reserved_token_226|>",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": true
1852
+ },
1853
+ "126311": {
1854
+ "content": "<|reserved_token_227|>",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": true
1860
+ },
1861
+ "126312": {
1862
+ "content": "<|reserved_token_228|>",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": true
1868
+ },
1869
+ "126313": {
1870
+ "content": "<|reserved_token_229|>",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": true
1876
+ },
1877
+ "126314": {
1878
+ "content": "<|reserved_token_230|>",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": true
1884
+ },
1885
+ "126315": {
1886
+ "content": "<|reserved_token_231|>",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": true
1892
+ },
1893
+ "126316": {
1894
+ "content": "<|reserved_token_232|>",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": true
1900
+ },
1901
+ "126317": {
1902
+ "content": "<|reserved_token_233|>",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": true
1908
+ },
1909
+ "126318": {
1910
+ "content": "<|reserved_token_234|>",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": true
1916
+ },
1917
+ "126319": {
1918
+ "content": "<|reserved_token_235|>",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": true
1924
+ },
1925
+ "126320": {
1926
+ "content": "<|reserved_token_236|>",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": true
1932
+ },
1933
+ "126321": {
1934
+ "content": "<|reserved_token_237|>",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": true
1940
+ },
1941
+ "126322": {
1942
+ "content": "<|reserved_token_238|>",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": true
1948
+ },
1949
+ "126323": {
1950
+ "content": "<|reserved_token_239|>",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": true
1956
+ },
1957
+ "126324": {
1958
+ "content": "<|reserved_token_240|>",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": true
1964
+ },
1965
+ "126325": {
1966
+ "content": "<|reserved_token_241|>",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": true
1972
+ },
1973
+ "126326": {
1974
+ "content": "<|reserved_token_242|>",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": true
1980
+ },
1981
+ "126327": {
1982
+ "content": "<|reserved_token_243|>",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": true
1988
+ },
1989
+ "126328": {
1990
+ "content": "<|reserved_token_244|>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": true
1996
+ },
1997
+ "126329": {
1998
+ "content": "<|reserved_token_245|>",
1999
+ "lstrip": false,
2000
+ "normalized": false,
2001
+ "rstrip": false,
2002
+ "single_word": false,
2003
+ "special": true
2004
+ },
2005
+ "126330": {
2006
+ "content": "<|reserved_token_246|>",
2007
+ "lstrip": false,
2008
+ "normalized": false,
2009
+ "rstrip": false,
2010
+ "single_word": false,
2011
+ "special": true
2012
+ },
2013
+ "126331": {
2014
+ "content": "<|reserved_token_247|>",
2015
+ "lstrip": false,
2016
+ "normalized": false,
2017
+ "rstrip": false,
2018
+ "single_word": false,
2019
+ "special": true
2020
+ },
2021
+ "126332": {
2022
+ "content": "<|reserved_token_248|>",
2023
+ "lstrip": false,
2024
+ "normalized": false,
2025
+ "rstrip": false,
2026
+ "single_word": false,
2027
+ "special": true
2028
+ },
2029
+ "126333": {
2030
+ "content": "<|reserved_token_249|>",
2031
+ "lstrip": false,
2032
+ "normalized": false,
2033
+ "rstrip": false,
2034
+ "single_word": false,
2035
+ "special": true
2036
+ },
2037
+ "126334": {
2038
+ "content": "<|reserved_token_250|>",
2039
+ "lstrip": false,
2040
+ "normalized": false,
2041
+ "rstrip": false,
2042
+ "single_word": false,
2043
+ "special": true
2044
+ },
2045
+ "126335": {
2046
+ "content": "<|reserved_token_251|>",
2047
+ "lstrip": false,
2048
+ "normalized": false,
2049
+ "rstrip": false,
2050
+ "single_word": false,
2051
+ "special": true
2052
+ },
2053
+ "126336": {
2054
+ "content": "<|mdm_mask|>",
2055
+ "lstrip": false,
2056
+ "normalized": false,
2057
+ "rstrip": false,
2058
+ "single_word": false,
2059
+ "special": true
2060
+ },
2061
+ "126337": {
2062
+ "content": "<|reserved_token_253|>",
2063
+ "lstrip": false,
2064
+ "normalized": false,
2065
+ "rstrip": false,
2066
+ "single_word": false,
2067
+ "special": true
2068
+ },
2069
+ "126338": {
2070
+ "content": "<|reserved_token_254|>",
2071
+ "lstrip": false,
2072
+ "normalized": false,
2073
+ "rstrip": false,
2074
+ "single_word": false,
2075
+ "special": true
2076
+ },
2077
+ "126339": {
2078
+ "content": "<|reserved_token_255|>",
2079
+ "lstrip": false,
2080
+ "normalized": false,
2081
+ "rstrip": false,
2082
+ "single_word": false,
2083
+ "special": true
2084
+ },
2085
+ "126340": {
2086
+ "content": "<role>",
2087
+ "lstrip": false,
2088
+ "normalized": false,
2089
+ "rstrip": false,
2090
+ "single_word": false,
2091
+ "special": true
2092
+ },
2093
+ "126341": {
2094
+ "content": "</role>",
2095
+ "lstrip": false,
2096
+ "normalized": false,
2097
+ "rstrip": false,
2098
+ "single_word": false,
2099
+ "special": true
2100
+ },
2101
+ "126342": {
2102
+ "content": "<|arithmetic_start|>",
2103
+ "lstrip": false,
2104
+ "normalized": false,
2105
+ "rstrip": false,
2106
+ "single_word": false,
2107
+ "special": true
2108
+ },
2109
+ "126343": {
2110
+ "content": "<|arithmetic_end|>",
2111
+ "lstrip": false,
2112
+ "normalized": false,
2113
+ "rstrip": false,
2114
+ "single_word": false,
2115
+ "special": true
2116
+ },
2117
+ "126344": {
2118
+ "content": "<|number_start|>",
2119
+ "lstrip": false,
2120
+ "normalized": false,
2121
+ "rstrip": false,
2122
+ "single_word": false,
2123
+ "special": true
2124
+ },
2125
+ "126345": {
2126
+ "content": "<|number_end|>",
2127
+ "lstrip": false,
2128
+ "normalized": false,
2129
+ "rstrip": false,
2130
+ "single_word": false,
2131
+ "special": true
2132
+ },
2133
+ "126346": {
2134
+ "content": "<|start_header_id|>",
2135
+ "lstrip": false,
2136
+ "normalized": false,
2137
+ "rstrip": false,
2138
+ "single_word": false,
2139
+ "special": true
2140
+ },
2141
+ "126347": {
2142
+ "content": "<|end_header_id|>",
2143
+ "lstrip": false,
2144
+ "normalized": false,
2145
+ "rstrip": false,
2146
+ "single_word": false,
2147
+ "special": true
2148
+ },
2149
+ "126348": {
2150
+ "content": "<|eot_id|>",
2151
+ "lstrip": false,
2152
+ "normalized": false,
2153
+ "rstrip": false,
2154
+ "single_word": false,
2155
+ "special": true
2156
+ }
2157
+ },
2158
+ "additional_special_tokens": [
2159
+ "<role>",
2160
+ "</role>",
2161
+ "<|arithmetic_start|>",
2162
+ "<|arithmetic_end|>",
2163
+ "<|number_start|>",
2164
+ "<|number_end|>"
2165
+ ],
2166
+ "bos_token": "<|startoftext|>",
2167
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
2168
+ "clean_up_tokenization_spaces": false,
2169
+ "cls_token": "[CLS]",
2170
+ "eos_token": "<|endoftext|>",
2171
+ "extra_special_tokens": {},
2172
+ "fast_tokenizer": true,
2173
+ "gmask_token": "[gMASK]",
2174
+ "merges_file": null,
2175
+ "model_input_names": [
2176
+ "input_ids",
2177
+ "attention_mask"
2178
+ ],
2179
+ "model_max_length": 2048,
2180
+ "pad_token": "<|endoftext|>",
2181
+ "padding_side": "right",
2182
+ "tokenizer_class": "PreTrainedTokenizer",
2183
+ "trust_remote_code": true
2184
+ }
trainer_state.json ADDED
@@ -0,0 +1,2309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 500,
7
+ "global_step": 325,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.01556420233463035,
14
+ "grad_norm": 32.460037697908916,
15
+ "learning_rate": 1.25e-06,
16
+ "loss": 2.0427,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0311284046692607,
21
+ "grad_norm": 14.314919163607806,
22
+ "learning_rate": 2.5e-06,
23
+ "loss": 1.8704,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.04669260700389105,
28
+ "grad_norm": 27.137073787955334,
29
+ "learning_rate": 3.7500000000000005e-06,
30
+ "loss": 2.009,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0622568093385214,
35
+ "grad_norm": 22.855686347208184,
36
+ "learning_rate": 5e-06,
37
+ "loss": 2.2908,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.07782101167315175,
42
+ "grad_norm": 17.021052812960836,
43
+ "learning_rate": 6.25e-06,
44
+ "loss": 1.6062,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.0933852140077821,
49
+ "grad_norm": 8.04115371265731,
50
+ "learning_rate": 7.500000000000001e-06,
51
+ "loss": 1.6328,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.10894941634241245,
56
+ "grad_norm": 8.684988862656194,
57
+ "learning_rate": 8.750000000000001e-06,
58
+ "loss": 1.5791,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.1245136186770428,
63
+ "grad_norm": 10.489704115967008,
64
+ "learning_rate": 1e-05,
65
+ "loss": 1.437,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.14007782101167315,
70
+ "grad_norm": 9.345852547867393,
71
+ "learning_rate": 1.125e-05,
72
+ "loss": 1.4409,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.1556420233463035,
77
+ "grad_norm": 12.566418385513145,
78
+ "learning_rate": 1.25e-05,
79
+ "loss": 1.9836,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.17120622568093385,
84
+ "grad_norm": 9.458631541156663,
85
+ "learning_rate": 1.375e-05,
86
+ "loss": 1.7625,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.1867704280155642,
91
+ "grad_norm": 4.775804904067164,
92
+ "learning_rate": 1.5000000000000002e-05,
93
+ "loss": 1.3358,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.20233463035019456,
98
+ "grad_norm": 7.063116954030999,
99
+ "learning_rate": 1.6250000000000002e-05,
100
+ "loss": 1.5127,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.2178988326848249,
105
+ "grad_norm": 20.081862895733657,
106
+ "learning_rate": 1.7500000000000002e-05,
107
+ "loss": 1.6345,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.23346303501945526,
112
+ "grad_norm": 7.4857791672008664,
113
+ "learning_rate": 1.8750000000000002e-05,
114
+ "loss": 1.6543,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.2490272373540856,
119
+ "grad_norm": 5.930935178930693,
120
+ "learning_rate": 2e-05,
121
+ "loss": 1.3915,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.26459143968871596,
126
+ "grad_norm": 4.891425231471704,
127
+ "learning_rate": 1.9999819470801393e-05,
128
+ "loss": 1.4524,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.2801556420233463,
133
+ "grad_norm": 8.526785651246044,
134
+ "learning_rate": 1.999927789044796e-05,
135
+ "loss": 1.3936,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.29571984435797666,
140
+ "grad_norm": 8.794855084727713,
141
+ "learning_rate": 1.9998375280666606e-05,
142
+ "loss": 1.4946,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.311284046692607,
147
+ "grad_norm": 5.5605631475331,
148
+ "learning_rate": 1.9997111677667875e-05,
149
+ "loss": 1.5168,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.32684824902723736,
154
+ "grad_norm": 6.109413863257978,
155
+ "learning_rate": 1.999548713214448e-05,
156
+ "loss": 1.3959,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.3424124513618677,
161
+ "grad_norm": 8.216498243755654,
162
+ "learning_rate": 1.9993501709269297e-05,
163
+ "loss": 1.5457,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.35797665369649806,
168
+ "grad_norm": 4.575471414036173,
169
+ "learning_rate": 1.9991155488692714e-05,
170
+ "loss": 1.3057,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.3735408560311284,
175
+ "grad_norm": 7.713781786096019,
176
+ "learning_rate": 1.9988448564539475e-05,
177
+ "loss": 1.52,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.38910505836575876,
182
+ "grad_norm": 9.333764622766337,
183
+ "learning_rate": 1.998538104540488e-05,
184
+ "loss": 1.2957,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.4046692607003891,
189
+ "grad_norm": 6.153987069403218,
190
+ "learning_rate": 1.9981953054350436e-05,
191
+ "loss": 1.2496,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.42023346303501946,
196
+ "grad_norm": 7.204269939964425,
197
+ "learning_rate": 1.997816472889891e-05,
198
+ "loss": 1.2556,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.4357976653696498,
203
+ "grad_norm": 9.356556657699878,
204
+ "learning_rate": 1.9974016221028825e-05,
205
+ "loss": 1.3693,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.45136186770428016,
210
+ "grad_norm": 18.674995074165327,
211
+ "learning_rate": 1.9969507697168372e-05,
212
+ "loss": 1.3901,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.4669260700389105,
217
+ "grad_norm": 8.743718086448856,
218
+ "learning_rate": 1.996463933818869e-05,
219
+ "loss": 1.4637,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.48249027237354086,
224
+ "grad_norm": 6.036142649788235,
225
+ "learning_rate": 1.9959411339396667e-05,
226
+ "loss": 1.446,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.4980544747081712,
231
+ "grad_norm": 11.118098752442311,
232
+ "learning_rate": 1.9953823910527057e-05,
233
+ "loss": 1.2325,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.5136186770428015,
238
+ "grad_norm": 8.532563003893063,
239
+ "learning_rate": 1.9947877275734103e-05,
240
+ "loss": 1.4182,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.5291828793774319,
245
+ "grad_norm": 8.44093940432976,
246
+ "learning_rate": 1.9941571673582517e-05,
247
+ "loss": 1.519,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.5447470817120622,
252
+ "grad_norm": 10.678108587266333,
253
+ "learning_rate": 1.9934907357037913e-05,
254
+ "loss": 1.4811,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.5603112840466926,
259
+ "grad_norm": 12.279223122144039,
260
+ "learning_rate": 1.992788459345669e-05,
261
+ "loss": 1.5383,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.5758754863813229,
266
+ "grad_norm": 9.6225514739576,
267
+ "learning_rate": 1.9920503664575252e-05,
268
+ "loss": 1.634,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.5914396887159533,
273
+ "grad_norm": 6.816063682489534,
274
+ "learning_rate": 1.991276486649876e-05,
275
+ "loss": 1.4922,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.6070038910505836,
280
+ "grad_norm": 8.462345745450083,
281
+ "learning_rate": 1.990466850968921e-05,
282
+ "loss": 1.4553,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.622568093385214,
287
+ "grad_norm": 7.511393821964174,
288
+ "learning_rate": 1.9896214918953003e-05,
289
+ "loss": 1.613,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.6381322957198443,
294
+ "grad_norm": 12.76100865490119,
295
+ "learning_rate": 1.9887404433427917e-05,
296
+ "loss": 1.3829,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.6536964980544747,
301
+ "grad_norm": 9.953708209183798,
302
+ "learning_rate": 1.9878237406569476e-05,
303
+ "loss": 1.2018,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.669260700389105,
308
+ "grad_norm": 17.646408078968005,
309
+ "learning_rate": 1.9868714206136787e-05,
310
+ "loss": 1.2234,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.6848249027237354,
315
+ "grad_norm": 6.687546724266615,
316
+ "learning_rate": 1.985883521417781e-05,
317
+ "loss": 1.3619,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.7003891050583657,
322
+ "grad_norm": 7.265965326318142,
323
+ "learning_rate": 1.9848600827013976e-05,
324
+ "loss": 1.3766,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.7159533073929961,
329
+ "grad_norm": 10.47550352191459,
330
+ "learning_rate": 1.983801145522434e-05,
331
+ "loss": 1.4978,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.7315175097276264,
336
+ "grad_norm": 7.719719591865551,
337
+ "learning_rate": 1.9827067523629075e-05,
338
+ "loss": 1.5026,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.7470817120622568,
343
+ "grad_norm": 6.653131519406193,
344
+ "learning_rate": 1.981576947127245e-05,
345
+ "loss": 1.3853,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.7626459143968871,
350
+ "grad_norm": 8.90485792562694,
351
+ "learning_rate": 1.9804117751405213e-05,
352
+ "loss": 1.4688,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.7782101167315175,
357
+ "grad_norm": 7.409558877721469,
358
+ "learning_rate": 1.9792112831466385e-05,
359
+ "loss": 1.2318,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.7937743190661478,
364
+ "grad_norm": 10.548282670671158,
365
+ "learning_rate": 1.9779755193064545e-05,
366
+ "loss": 1.1853,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.8093385214007782,
371
+ "grad_norm": 8.195819265190133,
372
+ "learning_rate": 1.9767045331958486e-05,
373
+ "loss": 1.3867,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.8249027237354085,
378
+ "grad_norm": 7.195118313650143,
379
+ "learning_rate": 1.9753983758037324e-05,
380
+ "loss": 1.3728,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.8404669260700389,
385
+ "grad_norm": 6.865553942117972,
386
+ "learning_rate": 1.9740570995300054e-05,
387
+ "loss": 1.4971,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.8560311284046692,
392
+ "grad_norm": 13.711210401882385,
393
+ "learning_rate": 1.9726807581834522e-05,
394
+ "loss": 1.5261,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.8715953307392996,
399
+ "grad_norm": 5.9709078674205776,
400
+ "learning_rate": 1.971269406979584e-05,
401
+ "loss": 1.1547,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.8871595330739299,
406
+ "grad_norm": 7.305358527853627,
407
+ "learning_rate": 1.9698231025384234e-05,
408
+ "loss": 1.2522,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.9027237354085603,
413
+ "grad_norm": 7.144056189221613,
414
+ "learning_rate": 1.9683419028822333e-05,
415
+ "loss": 1.2921,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.9182879377431906,
420
+ "grad_norm": 6.9606269877032005,
421
+ "learning_rate": 1.9668258674331882e-05,
422
+ "loss": 1.2708,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.933852140077821,
427
+ "grad_norm": 9.722878510396836,
428
+ "learning_rate": 1.9652750570109914e-05,
429
+ "loss": 1.4427,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.9494163424124513,
434
+ "grad_norm": 9.963909818863343,
435
+ "learning_rate": 1.9636895338304347e-05,
436
+ "loss": 1.3381,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.9649805447470817,
441
+ "grad_norm": 6.446954560778193,
442
+ "learning_rate": 1.9620693614989024e-05,
443
+ "loss": 1.4269,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.980544747081712,
448
+ "grad_norm": 7.603247343231994,
449
+ "learning_rate": 1.9604146050138194e-05,
450
+ "loss": 1.4298,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.9961089494163424,
455
+ "grad_norm": 6.349264800380979,
456
+ "learning_rate": 1.958725330760044e-05,
457
+ "loss": 1.0356,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 1.0,
462
+ "grad_norm": 6.349264800380979,
463
+ "learning_rate": 1.9570016065072047e-05,
464
+ "loss": 0.3835,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 1.0155642023346303,
469
+ "grad_norm": 8.467306321422342,
470
+ "learning_rate": 1.9552435014069805e-05,
471
+ "loss": 1.329,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 1.0311284046692606,
476
+ "grad_norm": 8.408957527442329,
477
+ "learning_rate": 1.953451085990329e-05,
478
+ "loss": 1.2351,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 1.046692607003891,
483
+ "grad_norm": 13.406884070709882,
484
+ "learning_rate": 1.9516244321646533e-05,
485
+ "loss": 1.6201,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 1.0622568093385214,
490
+ "grad_norm": 6.37594555257866,
491
+ "learning_rate": 1.9497636132109208e-05,
492
+ "loss": 1.3477,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 1.0778210116731517,
497
+ "grad_norm": 6.084035911845763,
498
+ "learning_rate": 1.9478687037807215e-05,
499
+ "loss": 1.1285,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 1.0933852140077822,
504
+ "grad_norm": 5.938233548564638,
505
+ "learning_rate": 1.9459397798932732e-05,
506
+ "loss": 1.2728,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 1.1089494163424125,
511
+ "grad_norm": 4.999727686110884,
512
+ "learning_rate": 1.9439769189323727e-05,
513
+ "loss": 1.2983,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 1.1245136186770428,
518
+ "grad_norm": 7.546246025502454,
519
+ "learning_rate": 1.9419801996432896e-05,
520
+ "loss": 1.2559,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 1.140077821011673,
525
+ "grad_norm": 5.50857701371075,
526
+ "learning_rate": 1.9399497021296094e-05,
527
+ "loss": 1.2612,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 1.1556420233463034,
532
+ "grad_norm": 19.755888394433814,
533
+ "learning_rate": 1.937885507850018e-05,
534
+ "loss": 1.3324,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 1.171206225680934,
539
+ "grad_norm": 7.035191415935576,
540
+ "learning_rate": 1.935787699615036e-05,
541
+ "loss": 1.3674,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 1.1867704280155642,
546
+ "grad_norm": 6.756030563749288,
547
+ "learning_rate": 1.933656361583694e-05,
548
+ "loss": 1.183,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 1.2023346303501945,
553
+ "grad_norm": 8.841867408302369,
554
+ "learning_rate": 1.931491579260158e-05,
555
+ "loss": 1.2485,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 1.217898832684825,
560
+ "grad_norm": 5.387317154730147,
561
+ "learning_rate": 1.9292934394902992e-05,
562
+ "loss": 1.5021,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 1.2334630350194553,
567
+ "grad_norm": 14.871501309985415,
568
+ "learning_rate": 1.9270620304582077e-05,
569
+ "loss": 1.5676,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 1.2490272373540856,
574
+ "grad_norm": 10.997862717881436,
575
+ "learning_rate": 1.9247974416826585e-05,
576
+ "loss": 1.3707,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 1.264591439688716,
581
+ "grad_norm": 7.2507989168336735,
582
+ "learning_rate": 1.922499764013518e-05,
583
+ "loss": 1.5842,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 1.2801556420233462,
588
+ "grad_norm": 9.537768676771838,
589
+ "learning_rate": 1.920169089628099e-05,
590
+ "loss": 1.4067,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 1.2957198443579767,
595
+ "grad_norm": 8.163551805381035,
596
+ "learning_rate": 1.9178055120274625e-05,
597
+ "loss": 1.2465,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 1.311284046692607,
602
+ "grad_norm": 6.640431551160505,
603
+ "learning_rate": 1.9154091260326698e-05,
604
+ "loss": 1.3956,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 1.3268482490272373,
609
+ "grad_norm": 26.20900323475498,
610
+ "learning_rate": 1.9129800277809742e-05,
611
+ "loss": 1.2936,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 1.3424124513618678,
616
+ "grad_norm": 9.219414651764641,
617
+ "learning_rate": 1.910518314721967e-05,
618
+ "loss": 1.5675,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 1.3579766536964981,
623
+ "grad_norm": 6.169958007250397,
624
+ "learning_rate": 1.9080240856136675e-05,
625
+ "loss": 1.51,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 1.3735408560311284,
630
+ "grad_norm": 7.775254406585112,
631
+ "learning_rate": 1.9054974405185605e-05,
632
+ "loss": 1.5837,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 1.3891050583657587,
637
+ "grad_norm": 6.000524431156958,
638
+ "learning_rate": 1.902938480799583e-05,
639
+ "loss": 1.239,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 1.404669260700389,
644
+ "grad_norm": 6.445928086057122,
645
+ "learning_rate": 1.9003473091160557e-05,
646
+ "loss": 1.2915,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 1.4202334630350195,
651
+ "grad_norm": 8.175071297255242,
652
+ "learning_rate": 1.8977240294195676e-05,
653
+ "loss": 1.5306,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 1.4357976653696498,
658
+ "grad_norm": 5.720210778577455,
659
+ "learning_rate": 1.895068746949803e-05,
660
+ "loss": 1.3159,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 1.45136186770428,
665
+ "grad_norm": 9.833046906184748,
666
+ "learning_rate": 1.8923815682303214e-05,
667
+ "loss": 1.553,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 1.4669260700389106,
672
+ "grad_norm": 6.851775208018755,
673
+ "learning_rate": 1.8896626010642833e-05,
674
+ "loss": 1.5885,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 1.482490272373541,
679
+ "grad_norm": 7.1890477833480295,
680
+ "learning_rate": 1.886911954530124e-05,
681
+ "loss": 1.5322,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 1.4980544747081712,
686
+ "grad_norm": 8.094895085879692,
687
+ "learning_rate": 1.884129738977181e-05,
688
+ "loss": 1.326,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 1.5136186770428015,
693
+ "grad_norm": 9.604855227288974,
694
+ "learning_rate": 1.8813160660212636e-05,
695
+ "loss": 1.4432,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 1.5291828793774318,
700
+ "grad_norm": 10.150820230299194,
701
+ "learning_rate": 1.8784710485401775e-05,
702
+ "loss": 1.2174,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 1.544747081712062,
707
+ "grad_norm": 9.238169258331935,
708
+ "learning_rate": 1.875594800669195e-05,
709
+ "loss": 1.2617,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 1.5603112840466926,
714
+ "grad_norm": 9.441159749907698,
715
+ "learning_rate": 1.8726874377964764e-05,
716
+ "loss": 1.234,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 1.575875486381323,
721
+ "grad_norm": 7.2474587450825,
722
+ "learning_rate": 1.869749076558442e-05,
723
+ "loss": 1.1766,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 1.5914396887159534,
728
+ "grad_norm": 6.23841795541216,
729
+ "learning_rate": 1.8667798348350918e-05,
730
+ "loss": 1.2045,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 1.6070038910505837,
735
+ "grad_norm": 6.554762465264489,
736
+ "learning_rate": 1.863779831745276e-05,
737
+ "loss": 1.1382,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 1.622568093385214,
742
+ "grad_norm": 5.997892924979543,
743
+ "learning_rate": 1.8607491876419183e-05,
744
+ "loss": 1.4172,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 1.6381322957198443,
749
+ "grad_norm": 6.371740787277364,
750
+ "learning_rate": 1.8576880241071852e-05,
751
+ "loss": 1.3726,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 1.6536964980544746,
756
+ "grad_norm": 7.86316264854559,
757
+ "learning_rate": 1.8545964639476105e-05,
758
+ "loss": 1.3789,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 1.669260700389105,
763
+ "grad_norm": 7.417730516932254,
764
+ "learning_rate": 1.851474631189167e-05,
765
+ "loss": 1.2634,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 1.6848249027237354,
770
+ "grad_norm": 8.222005228354707,
771
+ "learning_rate": 1.848322651072291e-05,
772
+ "loss": 1.4934,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 1.7003891050583657,
777
+ "grad_norm": 6.747214231413209,
778
+ "learning_rate": 1.8451406500468598e-05,
779
+ "loss": 1.2275,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 1.7159533073929962,
784
+ "grad_norm": 7.522875546614491,
785
+ "learning_rate": 1.841928755767116e-05,
786
+ "loss": 1.4232,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 1.7315175097276265,
791
+ "grad_norm": 8.395027504519643,
792
+ "learning_rate": 1.8386870970865488e-05,
793
+ "loss": 1.4617,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 1.7470817120622568,
798
+ "grad_norm": 5.682565677158726,
799
+ "learning_rate": 1.835415804052724e-05,
800
+ "loss": 1.2782,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 1.7626459143968871,
805
+ "grad_norm": 17.319126618522,
806
+ "learning_rate": 1.8321150079020656e-05,
807
+ "loss": 1.2252,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 1.7782101167315174,
812
+ "grad_norm": 6.698269746955856,
813
+ "learning_rate": 1.8287848410545922e-05,
814
+ "loss": 1.2638,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 1.7937743190661477,
819
+ "grad_norm": 5.389193784149641,
820
+ "learning_rate": 1.825425437108605e-05,
821
+ "loss": 1.2101,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 1.8093385214007782,
826
+ "grad_norm": 7.556872728377763,
827
+ "learning_rate": 1.8220369308353255e-05,
828
+ "loss": 1.4187,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 1.8249027237354085,
833
+ "grad_norm": 11.500517221563017,
834
+ "learning_rate": 1.8186194581734922e-05,
835
+ "loss": 1.2614,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 1.840466926070039,
840
+ "grad_norm": 6.973436659657028,
841
+ "learning_rate": 1.815173156223906e-05,
842
+ "loss": 1.6287,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 1.8560311284046693,
847
+ "grad_norm": 8.82430378736939,
848
+ "learning_rate": 1.811698163243929e-05,
849
+ "loss": 1.7683,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 1.8715953307392996,
854
+ "grad_norm": 7.44523008567814,
855
+ "learning_rate": 1.8081946186419375e-05,
856
+ "loss": 1.3718,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 1.88715953307393,
861
+ "grad_norm": 11.092035922405335,
862
+ "learning_rate": 1.804662662971732e-05,
863
+ "loss": 1.2244,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 1.9027237354085602,
868
+ "grad_norm": 8.907024665470365,
869
+ "learning_rate": 1.801102437926896e-05,
870
+ "loss": 1.1516,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 1.9182879377431905,
875
+ "grad_norm": 7.330064038520311,
876
+ "learning_rate": 1.797514086335113e-05,
877
+ "loss": 1.288,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 1.933852140077821,
882
+ "grad_norm": 10.980569189715007,
883
+ "learning_rate": 1.7938977521524355e-05,
884
+ "loss": 1.3815,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 1.9494163424124513,
889
+ "grad_norm": 8.792218570481833,
890
+ "learning_rate": 1.79025358045751e-05,
891
+ "loss": 1.5337,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 1.9649805447470818,
896
+ "grad_norm": 8.759608210372287,
897
+ "learning_rate": 1.786581717445759e-05,
898
+ "loss": 1.4971,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 1.9805447470817121,
903
+ "grad_norm": 6.719480961643205,
904
+ "learning_rate": 1.782882310423512e-05,
905
+ "loss": 1.3845,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 1.9961089494163424,
910
+ "grad_norm": 11.98512915914497,
911
+ "learning_rate": 1.7791555078020992e-05,
912
+ "loss": 1.8083,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 2.0,
917
+ "grad_norm": 11.98512915914497,
918
+ "learning_rate": 1.7754014590918964e-05,
919
+ "loss": 0.3816,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 2.0155642023346303,
924
+ "grad_norm": 6.076810203247505,
925
+ "learning_rate": 1.771620314896327e-05,
926
+ "loss": 1.1992,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 2.0311284046692606,
931
+ "grad_norm": 5.799331945733901,
932
+ "learning_rate": 1.76781222690582e-05,
933
+ "loss": 0.9603,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 2.046692607003891,
938
+ "grad_norm": 7.639810257162938,
939
+ "learning_rate": 1.763977347891725e-05,
940
+ "loss": 1.1609,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 2.062256809338521,
945
+ "grad_norm": 4.641223961792758,
946
+ "learning_rate": 1.7601158317001835e-05,
947
+ "loss": 1.4175,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 2.077821011673152,
952
+ "grad_norm": 6.543906827631292,
953
+ "learning_rate": 1.756227833245956e-05,
954
+ "loss": 1.1293,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 2.093385214007782,
959
+ "grad_norm": 5.807214604460152,
960
+ "learning_rate": 1.752313508506208e-05,
961
+ "loss": 1.2959,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 2.1089494163424125,
966
+ "grad_norm": 5.553563692538825,
967
+ "learning_rate": 1.748373014514253e-05,
968
+ "loss": 1.5164,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 2.124513618677043,
973
+ "grad_norm": 5.570141549794821,
974
+ "learning_rate": 1.7444065093532507e-05,
975
+ "loss": 1.223,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 2.140077821011673,
980
+ "grad_norm": 10.218543215792467,
981
+ "learning_rate": 1.740414152149868e-05,
982
+ "loss": 1.2693,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 2.1556420233463034,
987
+ "grad_norm": 6.654829769858401,
988
+ "learning_rate": 1.736396103067893e-05,
989
+ "loss": 1.2822,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 2.1712062256809337,
994
+ "grad_norm": 7.063879942686053,
995
+ "learning_rate": 1.73235252330181e-05,
996
+ "loss": 1.2313,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 2.1867704280155644,
1001
+ "grad_norm": 8.26459321928057,
1002
+ "learning_rate": 1.728283575070333e-05,
1003
+ "loss": 1.3606,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 2.2023346303501947,
1008
+ "grad_norm": 8.158351915542648,
1009
+ "learning_rate": 1.7241894216098995e-05,
1010
+ "loss": 1.1179,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 2.217898832684825,
1015
+ "grad_norm": 6.025748582779371,
1016
+ "learning_rate": 1.720070227168118e-05,
1017
+ "loss": 1.2041,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 2.2334630350194553,
1022
+ "grad_norm": 7.30387722610904,
1023
+ "learning_rate": 1.7159261569971828e-05,
1024
+ "loss": 1.2661,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 2.2490272373540856,
1029
+ "grad_norm": 6.274862129099997,
1030
+ "learning_rate": 1.7117573773472418e-05,
1031
+ "loss": 1.3209,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 2.264591439688716,
1036
+ "grad_norm": 8.052280930110639,
1037
+ "learning_rate": 1.7075640554597278e-05,
1038
+ "loss": 1.1796,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 2.280155642023346,
1043
+ "grad_norm": 10.893409682259657,
1044
+ "learning_rate": 1.703346359560651e-05,
1045
+ "loss": 1.4143,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 2.2957198443579765,
1050
+ "grad_norm": 9.090803934496224,
1051
+ "learning_rate": 1.6991044588538455e-05,
1052
+ "loss": 1.1129,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 2.311284046692607,
1057
+ "grad_norm": 9.407206024176414,
1058
+ "learning_rate": 1.694838523514187e-05,
1059
+ "loss": 1.1586,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 2.3268482490272375,
1064
+ "grad_norm": 8.517506234140628,
1065
+ "learning_rate": 1.690548724680761e-05,
1066
+ "loss": 1.4231,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 2.342412451361868,
1071
+ "grad_norm": 6.1621127583650255,
1072
+ "learning_rate": 1.6862352344500004e-05,
1073
+ "loss": 1.3577,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 2.357976653696498,
1078
+ "grad_norm": 37.87140785888283,
1079
+ "learning_rate": 1.681898225868779e-05,
1080
+ "loss": 1.3384,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 2.3735408560311284,
1085
+ "grad_norm": 8.232248393098434,
1086
+ "learning_rate": 1.677537872927471e-05,
1087
+ "loss": 1.3798,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 2.3891050583657587,
1092
+ "grad_norm": 8.407799337670626,
1093
+ "learning_rate": 1.673154350552971e-05,
1094
+ "loss": 1.3535,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 2.404669260700389,
1099
+ "grad_norm": 11.052092401395148,
1100
+ "learning_rate": 1.6687478346016736e-05,
1101
+ "loss": 1.3003,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 2.4202334630350193,
1106
+ "grad_norm": 11.914207501283393,
1107
+ "learning_rate": 1.6643185018524227e-05,
1108
+ "loss": 1.2803,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 2.43579766536965,
1113
+ "grad_norm": 9.369362265914104,
1114
+ "learning_rate": 1.6598665299994162e-05,
1115
+ "loss": 1.3889,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 2.4513618677042803,
1120
+ "grad_norm": 6.155749688526481,
1121
+ "learning_rate": 1.655392097645079e-05,
1122
+ "loss": 1.3065,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 2.4669260700389106,
1127
+ "grad_norm": 7.610662694751711,
1128
+ "learning_rate": 1.6508953842928966e-05,
1129
+ "loss": 1.3677,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 2.482490272373541,
1134
+ "grad_norm": 8.874434851480999,
1135
+ "learning_rate": 1.6463765703402154e-05,
1136
+ "loss": 1.1467,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 2.498054474708171,
1141
+ "grad_norm": 6.048721329156399,
1142
+ "learning_rate": 1.6418358370710048e-05,
1143
+ "loss": 1.2878,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 2.5136186770428015,
1148
+ "grad_norm": 8.012765512165412,
1149
+ "learning_rate": 1.6372733666485842e-05,
1150
+ "loss": 1.2369,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 2.529182879377432,
1155
+ "grad_norm": 9.98813005959193,
1156
+ "learning_rate": 1.6326893421083157e-05,
1157
+ "loss": 1.3142,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 2.544747081712062,
1162
+ "grad_norm": 6.989195393880204,
1163
+ "learning_rate": 1.6280839473502607e-05,
1164
+ "loss": 1.2651,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 2.5603112840466924,
1169
+ "grad_norm": 13.328346097167426,
1170
+ "learning_rate": 1.6234573671318027e-05,
1171
+ "loss": 1.5734,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 2.5758754863813227,
1176
+ "grad_norm": 7.47939944848892,
1177
+ "learning_rate": 1.6188097870602344e-05,
1178
+ "loss": 1.1876,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 2.5914396887159534,
1183
+ "grad_norm": 9.813447558487908,
1184
+ "learning_rate": 1.614141393585313e-05,
1185
+ "loss": 1.2428,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 2.6070038910505837,
1190
+ "grad_norm": 8.170087254779242,
1191
+ "learning_rate": 1.6094523739917797e-05,
1192
+ "loss": 1.2607,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 2.622568093385214,
1197
+ "grad_norm": 6.143715398790098,
1198
+ "learning_rate": 1.6047429163918444e-05,
1199
+ "loss": 1.3353,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 2.6381322957198443,
1204
+ "grad_norm": 17.125656609647287,
1205
+ "learning_rate": 1.600013209717642e-05,
1206
+ "loss": 1.4865,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 2.6536964980544746,
1211
+ "grad_norm": 10.776858476646886,
1212
+ "learning_rate": 1.5952634437136523e-05,
1213
+ "loss": 1.5398,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 2.669260700389105,
1218
+ "grad_norm": 7.0818183172701605,
1219
+ "learning_rate": 1.5904938089290864e-05,
1220
+ "loss": 1.3059,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 2.6848249027237356,
1225
+ "grad_norm": 20.107104125600667,
1226
+ "learning_rate": 1.5857044967102423e-05,
1227
+ "loss": 1.325,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 2.700389105058366,
1232
+ "grad_norm": 9.685536590494742,
1233
+ "learning_rate": 1.580895699192831e-05,
1234
+ "loss": 1.2209,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 2.7159533073929962,
1239
+ "grad_norm": 14.272302800628733,
1240
+ "learning_rate": 1.5760676092942663e-05,
1241
+ "loss": 1.1283,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 2.7315175097276265,
1246
+ "grad_norm": 8.529426981120846,
1247
+ "learning_rate": 1.571220420705926e-05,
1248
+ "loss": 1.1967,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 2.747081712062257,
1253
+ "grad_norm": 9.25820017440293,
1254
+ "learning_rate": 1.5663543278853818e-05,
1255
+ "loss": 1.2561,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 2.762645914396887,
1260
+ "grad_norm": 6.7665962336727725,
1261
+ "learning_rate": 1.5614695260485973e-05,
1262
+ "loss": 1.1381,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 2.7782101167315174,
1267
+ "grad_norm": 11.677157670781277,
1268
+ "learning_rate": 1.5565662111620967e-05,
1269
+ "loss": 1.123,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 2.7937743190661477,
1274
+ "grad_norm": 10.612616450023706,
1275
+ "learning_rate": 1.5516445799351046e-05,
1276
+ "loss": 1.4241,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 2.809338521400778,
1281
+ "grad_norm": 5.785097669619218,
1282
+ "learning_rate": 1.5467048298116516e-05,
1283
+ "loss": 1.1191,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 2.8249027237354083,
1288
+ "grad_norm": 19.456658401658856,
1289
+ "learning_rate": 1.5417471589626563e-05,
1290
+ "loss": 1.0679,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 2.840466926070039,
1295
+ "grad_norm": 8.020315674017025,
1296
+ "learning_rate": 1.5367717662779732e-05,
1297
+ "loss": 1.2059,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 2.8560311284046693,
1302
+ "grad_norm": 9.637600750103296,
1303
+ "learning_rate": 1.531778851358414e-05,
1304
+ "loss": 1.1613,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 2.8715953307392996,
1309
+ "grad_norm": 6.693770146874348,
1310
+ "learning_rate": 1.5267686145077406e-05,
1311
+ "loss": 1.127,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 2.88715953307393,
1316
+ "grad_norm": 18.137993374614158,
1317
+ "learning_rate": 1.5217412567246298e-05,
1318
+ "loss": 1.5315,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 2.90272373540856,
1323
+ "grad_norm": 9.571406690209106,
1324
+ "learning_rate": 1.5166969796946087e-05,
1325
+ "loss": 1.1774,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 2.9182879377431905,
1330
+ "grad_norm": 19.959548104529457,
1331
+ "learning_rate": 1.5116359857819635e-05,
1332
+ "loss": 1.3707,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 2.9338521400778212,
1337
+ "grad_norm": 16.169561781876904,
1338
+ "learning_rate": 1.5065584780216225e-05,
1339
+ "loss": 1.3618,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 2.9494163424124515,
1344
+ "grad_norm": 7.308704556972184,
1345
+ "learning_rate": 1.501464660111009e-05,
1346
+ "loss": 1.5718,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 2.964980544747082,
1351
+ "grad_norm": 11.175947473356464,
1352
+ "learning_rate": 1.4963547364018711e-05,
1353
+ "loss": 1.1821,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 2.980544747081712,
1358
+ "grad_norm": 6.880501518603281,
1359
+ "learning_rate": 1.4912289118920821e-05,
1360
+ "loss": 1.2976,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 2.9961089494163424,
1365
+ "grad_norm": 16.45488939160082,
1366
+ "learning_rate": 1.4860873922174188e-05,
1367
+ "loss": 1.5251,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 3.0,
1372
+ "grad_norm": 16.45488939160082,
1373
+ "learning_rate": 1.4809303836433086e-05,
1374
+ "loss": 0.3486,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 3.0155642023346303,
1379
+ "grad_norm": 17.26667705122932,
1380
+ "learning_rate": 1.4757580930565569e-05,
1381
+ "loss": 1.2262,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 3.0311284046692606,
1386
+ "grad_norm": 7.079930630802389,
1387
+ "learning_rate": 1.4705707279570476e-05,
1388
+ "loss": 1.0964,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 3.046692607003891,
1393
+ "grad_norm": 5.9707164634211045,
1394
+ "learning_rate": 1.4653684964494163e-05,
1395
+ "loss": 1.1285,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 3.062256809338521,
1400
+ "grad_norm": 7.374420248201497,
1401
+ "learning_rate": 1.460151607234705e-05,
1402
+ "loss": 1.1528,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 3.077821011673152,
1407
+ "grad_norm": 7.823768857549868,
1408
+ "learning_rate": 1.4549202696019868e-05,
1409
+ "loss": 1.6089,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 3.093385214007782,
1414
+ "grad_norm": 13.095423850316486,
1415
+ "learning_rate": 1.44967469341997e-05,
1416
+ "loss": 1.4053,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 3.1089494163424125,
1421
+ "grad_norm": 8.57838469081796,
1422
+ "learning_rate": 1.4444150891285809e-05,
1423
+ "loss": 1.3911,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 3.124513618677043,
1428
+ "grad_norm": 10.492752547850309,
1429
+ "learning_rate": 1.4391416677305183e-05,
1430
+ "loss": 1.7466,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 3.140077821011673,
1435
+ "grad_norm": 12.04907785845439,
1436
+ "learning_rate": 1.4338546407827912e-05,
1437
+ "loss": 1.3069,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 3.1556420233463034,
1442
+ "grad_norm": 9.082131491175343,
1443
+ "learning_rate": 1.4285542203882301e-05,
1444
+ "loss": 1.3909,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 3.1712062256809337,
1449
+ "grad_norm": 7.8265612070424035,
1450
+ "learning_rate": 1.4232406191869786e-05,
1451
+ "loss": 1.1016,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 3.1867704280155644,
1456
+ "grad_norm": 7.017081240597243,
1457
+ "learning_rate": 1.4179140503479622e-05,
1458
+ "loss": 1.3007,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 3.2023346303501947,
1463
+ "grad_norm": 11.222861362951033,
1464
+ "learning_rate": 1.4125747275603384e-05,
1465
+ "loss": 1.4584,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 3.217898832684825,
1470
+ "grad_norm": 8.228254518059948,
1471
+ "learning_rate": 1.4072228650249205e-05,
1472
+ "loss": 1.1437,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 3.2334630350194553,
1477
+ "grad_norm": 5.620105281993818,
1478
+ "learning_rate": 1.4018586774455876e-05,
1479
+ "loss": 1.0801,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 3.2490272373540856,
1484
+ "grad_norm": 8.270265614809485,
1485
+ "learning_rate": 1.3964823800206698e-05,
1486
+ "loss": 1.4172,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 3.264591439688716,
1491
+ "grad_norm": 10.759581180311525,
1492
+ "learning_rate": 1.3910941884343144e-05,
1493
+ "loss": 1.3431,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 3.280155642023346,
1498
+ "grad_norm": 9.256121877658135,
1499
+ "learning_rate": 1.3856943188478353e-05,
1500
+ "loss": 1.1614,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 3.2957198443579765,
1505
+ "grad_norm": 8.278774263244427,
1506
+ "learning_rate": 1.3802829878910387e-05,
1507
+ "loss": 1.5056,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 3.311284046692607,
1512
+ "grad_norm": 7.988122466692388,
1513
+ "learning_rate": 1.3748604126535335e-05,
1514
+ "loss": 1.1658,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 3.3268482490272375,
1519
+ "grad_norm": 25.69960791189383,
1520
+ "learning_rate": 1.3694268106760225e-05,
1521
+ "loss": 1.5151,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 3.342412451361868,
1526
+ "grad_norm": 6.716460926595037,
1527
+ "learning_rate": 1.3639823999415744e-05,
1528
+ "loss": 1.2914,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 3.357976653696498,
1533
+ "grad_norm": 16.08954441850179,
1534
+ "learning_rate": 1.3585273988668804e-05,
1535
+ "loss": 1.2714,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 3.3735408560311284,
1540
+ "grad_norm": 7.277025513470879,
1541
+ "learning_rate": 1.3530620262934892e-05,
1542
+ "loss": 1.3116,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 3.3891050583657587,
1547
+ "grad_norm": 10.39394733050087,
1548
+ "learning_rate": 1.3475865014790303e-05,
1549
+ "loss": 1.3044,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 3.404669260700389,
1554
+ "grad_norm": 6.793016895617423,
1555
+ "learning_rate": 1.342101044088416e-05,
1556
+ "loss": 1.6471,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 3.4202334630350193,
1561
+ "grad_norm": 8.307309122049785,
1562
+ "learning_rate": 1.3366058741850302e-05,
1563
+ "loss": 1.1521,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 3.43579766536965,
1568
+ "grad_norm": 11.961031173730973,
1569
+ "learning_rate": 1.3311012122218995e-05,
1570
+ "loss": 1.4236,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 3.4513618677042803,
1575
+ "grad_norm": 12.085462142899722,
1576
+ "learning_rate": 1.3255872790328485e-05,
1577
+ "loss": 1.4304,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 3.4669260700389106,
1582
+ "grad_norm": 12.043766601436674,
1583
+ "learning_rate": 1.320064295823642e-05,
1584
+ "loss": 1.105,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 3.482490272373541,
1589
+ "grad_norm": 6.830210730411899,
1590
+ "learning_rate": 1.3145324841631093e-05,
1591
+ "loss": 1.0992,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 3.498054474708171,
1596
+ "grad_norm": 5.183807189599878,
1597
+ "learning_rate": 1.3089920659742561e-05,
1598
+ "loss": 1.1104,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 3.5136186770428015,
1603
+ "grad_norm": 8.173248197932283,
1604
+ "learning_rate": 1.3034432635253615e-05,
1605
+ "loss": 1.3416,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 3.529182879377432,
1610
+ "grad_norm": 6.840510399122009,
1611
+ "learning_rate": 1.2978862994210609e-05,
1612
+ "loss": 1.1301,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 3.544747081712062,
1617
+ "grad_norm": 6.795335624835114,
1618
+ "learning_rate": 1.2923213965934158e-05,
1619
+ "loss": 1.1824,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 3.5603112840466924,
1624
+ "grad_norm": 12.487628895610484,
1625
+ "learning_rate": 1.2867487782929702e-05,
1626
+ "loss": 1.4,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 3.5758754863813227,
1631
+ "grad_norm": 7.498953182696051,
1632
+ "learning_rate": 1.2811686680797942e-05,
1633
+ "loss": 1.0117,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 3.5914396887159534,
1638
+ "grad_norm": 11.599970960534753,
1639
+ "learning_rate": 1.2755812898145157e-05,
1640
+ "loss": 1.457,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 3.6070038910505837,
1645
+ "grad_norm": 10.728915546115905,
1646
+ "learning_rate": 1.269986867649339e-05,
1647
+ "loss": 1.0275,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 3.622568093385214,
1652
+ "grad_norm": 7.212471068564826,
1653
+ "learning_rate": 1.2643856260190533e-05,
1654
+ "loss": 1.2426,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 3.6381322957198443,
1659
+ "grad_norm": 7.257310852456952,
1660
+ "learning_rate": 1.2587777896320279e-05,
1661
+ "loss": 1.1293,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 3.6536964980544746,
1666
+ "grad_norm": 5.41922031825349,
1667
+ "learning_rate": 1.2531635834611981e-05,
1668
+ "loss": 1.2113,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 3.669260700389105,
1673
+ "grad_norm": 6.480868678608291,
1674
+ "learning_rate": 1.2475432327350396e-05,
1675
+ "loss": 1.2706,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 3.6848249027237356,
1680
+ "grad_norm": 6.80783495792981,
1681
+ "learning_rate": 1.2419169629285335e-05,
1682
+ "loss": 1.0698,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 3.700389105058366,
1687
+ "grad_norm": 7.234690686703731,
1688
+ "learning_rate": 1.236284999754119e-05,
1689
+ "loss": 1.4999,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 3.7159533073929962,
1694
+ "grad_norm": 9.331788321366725,
1695
+ "learning_rate": 1.2306475691526407e-05,
1696
+ "loss": 1.0748,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 3.7315175097276265,
1701
+ "grad_norm": 7.024835954207243,
1702
+ "learning_rate": 1.2250048972842823e-05,
1703
+ "loss": 1.241,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 3.747081712062257,
1708
+ "grad_norm": 8.381718396842675,
1709
+ "learning_rate": 1.2193572105194953e-05,
1710
+ "loss": 1.4368,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 3.762645914396887,
1715
+ "grad_norm": 8.467657085467351,
1716
+ "learning_rate": 1.2137047354299165e-05,
1717
+ "loss": 1.1316,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 3.7782101167315174,
1722
+ "grad_norm": 6.56413902354136,
1723
+ "learning_rate": 1.2080476987792786e-05,
1724
+ "loss": 1.2924,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 3.7937743190661477,
1729
+ "grad_norm": 11.457150627414464,
1730
+ "learning_rate": 1.2023863275143138e-05,
1731
+ "loss": 1.1807,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 3.809338521400778,
1736
+ "grad_norm": 11.784032118298212,
1737
+ "learning_rate": 1.1967208487556477e-05,
1738
+ "loss": 1.3601,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 3.8249027237354083,
1743
+ "grad_norm": 7.618595171387596,
1744
+ "learning_rate": 1.1910514897886892e-05,
1745
+ "loss": 1.0757,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 3.840466926070039,
1750
+ "grad_norm": 15.913563034938784,
1751
+ "learning_rate": 1.1853784780545123e-05,
1752
+ "loss": 1.381,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 3.8560311284046693,
1757
+ "grad_norm": 9.448026664890813,
1758
+ "learning_rate": 1.1797020411407303e-05,
1759
+ "loss": 1.1996,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 3.8715953307392996,
1764
+ "grad_norm": 9.36740858593225,
1765
+ "learning_rate": 1.1740224067723676e-05,
1766
+ "loss": 1.3333,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 3.88715953307393,
1771
+ "grad_norm": 6.202904532995713,
1772
+ "learning_rate": 1.1683398028027218e-05,
1773
+ "loss": 1.0989,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 3.90272373540856,
1778
+ "grad_norm": 6.807434814034836,
1779
+ "learning_rate": 1.162654457204224e-05,
1780
+ "loss": 1.0997,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 3.9182879377431905,
1785
+ "grad_norm": 7.474757873337292,
1786
+ "learning_rate": 1.1569665980592934e-05,
1787
+ "loss": 1.3777,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 3.9338521400778212,
1792
+ "grad_norm": 10.348844472235802,
1793
+ "learning_rate": 1.1512764535511862e-05,
1794
+ "loss": 1.4729,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 3.9494163424124515,
1799
+ "grad_norm": 9.595077808457091,
1800
+ "learning_rate": 1.1455842519548417e-05,
1801
+ "loss": 1.1649,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 3.964980544747082,
1806
+ "grad_norm": 12.298828537750817,
1807
+ "learning_rate": 1.139890221627725e-05,
1808
+ "loss": 1.1849,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 3.980544747081712,
1813
+ "grad_norm": 9.042727283207734,
1814
+ "learning_rate": 1.1341945910006656e-05,
1815
+ "loss": 1.3065,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 3.9961089494163424,
1820
+ "grad_norm": 7.530830029119465,
1821
+ "learning_rate": 1.1284975885686926e-05,
1822
+ "loss": 1.2184,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 4.0,
1827
+ "grad_norm": 7.889222687866491,
1828
+ "learning_rate": 1.1227994428818692e-05,
1829
+ "loss": 0.4148,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 4.01556420233463,
1834
+ "grad_norm": 7.442531502305794,
1835
+ "learning_rate": 1.1171003825361233e-05,
1836
+ "loss": 1.2908,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 4.031128404669261,
1841
+ "grad_norm": 5.5861970223083945,
1842
+ "learning_rate": 1.1114006361640763e-05,
1843
+ "loss": 1.1309,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 4.046692607003891,
1848
+ "grad_norm": 7.19625969261882,
1849
+ "learning_rate": 1.105700432425871e-05,
1850
+ "loss": 1.149,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 4.062256809338521,
1855
+ "grad_norm": 7.319827903412528,
1856
+ "learning_rate": 1.1000000000000001e-05,
1857
+ "loss": 1.2781,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 4.0778210116731515,
1862
+ "grad_norm": 8.579128780187071,
1863
+ "learning_rate": 1.094299567574129e-05,
1864
+ "loss": 1.3237,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 4.093385214007782,
1869
+ "grad_norm": 6.407050357928513,
1870
+ "learning_rate": 1.0885993638359242e-05,
1871
+ "loss": 1.4427,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 4.108949416342412,
1876
+ "grad_norm": 8.132256321978414,
1877
+ "learning_rate": 1.0828996174638768e-05,
1878
+ "loss": 1.394,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 4.124513618677042,
1883
+ "grad_norm": 6.3812196369738645,
1884
+ "learning_rate": 1.0772005571181313e-05,
1885
+ "loss": 1.1583,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 4.1400778210116735,
1890
+ "grad_norm": 13.85707637253458,
1891
+ "learning_rate": 1.0715024114313077e-05,
1892
+ "loss": 1.4429,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 4.155642023346304,
1897
+ "grad_norm": 21.528973223922698,
1898
+ "learning_rate": 1.0658054089993349e-05,
1899
+ "loss": 1.4796,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 4.171206225680934,
1904
+ "grad_norm": 6.331202799716651,
1905
+ "learning_rate": 1.0601097783722751e-05,
1906
+ "loss": 1.2535,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 4.186770428015564,
1911
+ "grad_norm": 6.192886059438914,
1912
+ "learning_rate": 1.0544157480451586e-05,
1913
+ "loss": 1.365,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 4.202334630350195,
1918
+ "grad_norm": 9.092962942972557,
1919
+ "learning_rate": 1.048723546448814e-05,
1920
+ "loss": 1.2418,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 4.217898832684825,
1925
+ "grad_norm": 9.088713897338243,
1926
+ "learning_rate": 1.0430334019407069e-05,
1927
+ "loss": 1.5284,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 4.233463035019455,
1932
+ "grad_norm": 7.935649176333802,
1933
+ "learning_rate": 1.0373455427957762e-05,
1934
+ "loss": 1.1285,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 4.249027237354086,
1939
+ "grad_norm": 6.747077137812801,
1940
+ "learning_rate": 1.0316601971972787e-05,
1941
+ "loss": 1.1133,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 4.264591439688716,
1946
+ "grad_norm": 6.190409945190735,
1947
+ "learning_rate": 1.0259775932276325e-05,
1948
+ "loss": 1.309,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 4.280155642023346,
1953
+ "grad_norm": 7.659504834977579,
1954
+ "learning_rate": 1.0202979588592702e-05,
1955
+ "loss": 1.134,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 4.2957198443579765,
1960
+ "grad_norm": 6.035623878393655,
1961
+ "learning_rate": 1.0146215219454882e-05,
1962
+ "loss": 1.1742,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 4.311284046692607,
1967
+ "grad_norm": 14.743602784497947,
1968
+ "learning_rate": 1.0089485102113113e-05,
1969
+ "loss": 1.2349,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 4.326848249027237,
1974
+ "grad_norm": 34.32059780452938,
1975
+ "learning_rate": 1.0032791512443527e-05,
1976
+ "loss": 1.1312,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 4.342412451361867,
1981
+ "grad_norm": 6.537432858619071,
1982
+ "learning_rate": 9.976136724856869e-06,
1983
+ "loss": 1.2261,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 4.357976653696498,
1988
+ "grad_norm": 6.805760395487357,
1989
+ "learning_rate": 9.919523012207217e-06,
1990
+ "loss": 1.2109,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 4.373540856031129,
1995
+ "grad_norm": 8.577713820915738,
1996
+ "learning_rate": 9.862952645700841e-06,
1997
+ "loss": 1.4719,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 4.389105058365759,
2002
+ "grad_norm": 5.490284251492559,
2003
+ "learning_rate": 9.806427894805048e-06,
2004
+ "loss": 1.312,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 4.404669260700389,
2009
+ "grad_norm": 8.327345481649647,
2010
+ "learning_rate": 9.74995102715718e-06,
2011
+ "loss": 1.2461,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 4.42023346303502,
2016
+ "grad_norm": 6.111747370932479,
2017
+ "learning_rate": 9.693524308473596e-06,
2018
+ "loss": 1.3926,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 4.43579766536965,
2023
+ "grad_norm": 8.141202180806642,
2024
+ "learning_rate": 9.637150002458813e-06,
2025
+ "loss": 1.2008,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 4.45136186770428,
2030
+ "grad_norm": 9.12454930317004,
2031
+ "learning_rate": 9.58083037071467e-06,
2032
+ "loss": 1.095,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 4.466926070038911,
2037
+ "grad_norm": 8.109583837297146,
2038
+ "learning_rate": 9.524567672649606e-06,
2039
+ "loss": 1.1697,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 4.482490272373541,
2044
+ "grad_norm": 6.940093378941827,
2045
+ "learning_rate": 9.468364165388022e-06,
2046
+ "loss": 1.5673,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 4.498054474708171,
2051
+ "grad_norm": 8.029108149503637,
2052
+ "learning_rate": 9.412222103679728e-06,
2053
+ "loss": 1.4509,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 4.5136186770428015,
2058
+ "grad_norm": 7.3797751032553345,
2059
+ "learning_rate": 9.356143739809472e-06,
2060
+ "loss": 1.1467,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 4.529182879377432,
2065
+ "grad_norm": 11.435244944138505,
2066
+ "learning_rate": 9.300131323506617e-06,
2067
+ "loss": 1.1765,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 4.544747081712062,
2072
+ "grad_norm": 9.332357406857541,
2073
+ "learning_rate": 9.244187101854846e-06,
2074
+ "loss": 1.2847,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 4.560311284046692,
2079
+ "grad_norm": 7.009210489706155,
2080
+ "learning_rate": 9.188313319202057e-06,
2081
+ "loss": 1.3632,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 4.575875486381323,
2086
+ "grad_norm": 8.623706053802827,
2087
+ "learning_rate": 9.132512217070301e-06,
2088
+ "loss": 1.3002,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 4.591439688715953,
2093
+ "grad_norm": 7.10477639818194,
2094
+ "learning_rate": 9.076786034065843e-06,
2095
+ "loss": 1.2559,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 4.607003891050583,
2100
+ "grad_norm": 16.24344498357353,
2101
+ "learning_rate": 9.021137005789393e-06,
2102
+ "loss": 1.3538,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 4.622568093385214,
2107
+ "grad_norm": 5.84525864201727,
2108
+ "learning_rate": 8.965567364746388e-06,
2109
+ "loss": 1.2,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 4.638132295719844,
2114
+ "grad_norm": 14.06325953577117,
2115
+ "learning_rate": 8.910079340257442e-06,
2116
+ "loss": 1.1461,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 4.653696498054475,
2121
+ "grad_norm": 7.743168891211479,
2122
+ "learning_rate": 8.854675158368908e-06,
2123
+ "loss": 1.3149,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 4.669260700389105,
2128
+ "grad_norm": 5.646503833678955,
2129
+ "learning_rate": 8.799357041763583e-06,
2130
+ "loss": 1.1332,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 4.684824902723736,
2135
+ "grad_norm": 7.846526869237445,
2136
+ "learning_rate": 8.744127209671516e-06,
2137
+ "loss": 1.2928,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 4.700389105058366,
2142
+ "grad_norm": 24.312874392544217,
2143
+ "learning_rate": 8.688987877781008e-06,
2144
+ "loss": 1.4022,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 4.715953307392996,
2149
+ "grad_norm": 11.006982390019688,
2150
+ "learning_rate": 8.633941258149699e-06,
2151
+ "loss": 1.6169,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 4.7315175097276265,
2156
+ "grad_norm": 8.161038346958115,
2157
+ "learning_rate": 8.578989559115842e-06,
2158
+ "loss": 1.1205,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 4.747081712062257,
2163
+ "grad_norm": 10.360221596629799,
2164
+ "learning_rate": 8.524134985209698e-06,
2165
+ "loss": 1.1426,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 4.762645914396887,
2170
+ "grad_norm": 8.086983191969743,
2171
+ "learning_rate": 8.46937973706511e-06,
2172
+ "loss": 1.1742,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 4.778210116731517,
2177
+ "grad_norm": 7.93821224397039,
2178
+ "learning_rate": 8.414726011331197e-06,
2179
+ "loss": 1.3003,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 4.793774319066148,
2184
+ "grad_norm": 6.8964113141193195,
2185
+ "learning_rate": 8.360176000584257e-06,
2186
+ "loss": 1.3921,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 4.809338521400778,
2191
+ "grad_norm": 9.541918636824354,
2192
+ "learning_rate": 8.30573189323978e-06,
2193
+ "loss": 1.4406,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 4.824902723735408,
2198
+ "grad_norm": 9.88288044965242,
2199
+ "learning_rate": 8.251395873464671e-06,
2200
+ "loss": 1.3104,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 4.840466926070039,
2205
+ "grad_norm": 7.034997485501755,
2206
+ "learning_rate": 8.197170121089617e-06,
2207
+ "loss": 1.4781,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 4.856031128404669,
2212
+ "grad_norm": 7.024182095026262,
2213
+ "learning_rate": 8.143056811521653e-06,
2214
+ "loss": 1.0645,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 4.8715953307393,
2219
+ "grad_norm": 6.763562775528538,
2220
+ "learning_rate": 8.089058115656859e-06,
2221
+ "loss": 1.1622,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 4.88715953307393,
2226
+ "grad_norm": 22.915236408148893,
2227
+ "learning_rate": 8.035176199793309e-06,
2228
+ "loss": 1.2201,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 4.902723735408561,
2233
+ "grad_norm": 22.9486570021447,
2234
+ "learning_rate": 7.981413225544128e-06,
2235
+ "loss": 1.3326,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 4.918287937743191,
2240
+ "grad_norm": 7.766492426098674,
2241
+ "learning_rate": 7.9277713497508e-06,
2242
+ "loss": 1.3444,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 4.933852140077821,
2247
+ "grad_norm": 8.922409990504782,
2248
+ "learning_rate": 7.87425272439662e-06,
2249
+ "loss": 1.2533,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 4.9494163424124515,
2254
+ "grad_norm": 10.120435136565488,
2255
+ "learning_rate": 7.82085949652038e-06,
2256
+ "loss": 1.4161,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 4.964980544747082,
2261
+ "grad_norm": 11.585619162092177,
2262
+ "learning_rate": 7.767593808130216e-06,
2263
+ "loss": 1.408,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 4.980544747081712,
2268
+ "grad_norm": 8.068469524272025,
2269
+ "learning_rate": 7.714457796117705e-06,
2270
+ "loss": 1.175,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 4.996108949416342,
2275
+ "grad_norm": 6.472014606610803,
2276
+ "learning_rate": 7.661453592172093e-06,
2277
+ "loss": 1.356,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 5.0,
2282
+ "grad_norm": 6.472014606610803,
2283
+ "learning_rate": 7.60858332269482e-06,
2284
+ "loss": 0.4053,
2285
+ "step": 325
2286
+ }
2287
+ ],
2288
+ "logging_steps": 1.0,
2289
+ "max_steps": 512,
2290
+ "num_input_tokens_seen": 0,
2291
+ "num_train_epochs": 8,
2292
+ "save_steps": 500,
2293
+ "stateful_callbacks": {
2294
+ "TrainerControl": {
2295
+ "args": {
2296
+ "should_epoch_stop": false,
2297
+ "should_evaluate": false,
2298
+ "should_log": false,
2299
+ "should_save": true,
2300
+ "should_training_stop": false
2301
+ },
2302
+ "attributes": {}
2303
+ }
2304
+ },
2305
+ "total_flos": 176455044300800.0,
2306
+ "train_batch_size": 4,
2307
+ "trial_name": null,
2308
+ "trial_params": null
2309
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55a4adaab8848e3bd314a2a5b4b72c4727f222798a39a203c1916539b3a3cc70
3
+ size 8120
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)