hasibirok0 commited on
Commit
17fd039
·
verified ·
1 Parent(s): ee5734e

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-14B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-14B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32.0,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "o_proj",
25
+ "gate_proj",
26
+ "q_proj",
27
+ "k_proj",
28
+ "up_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "FEATURE_EXTRACTION",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aed5b14c7cb4f4b5eebdc8ca6a14237191b9e5d3ac443cb34adcd8e50ad1604e
3
+ size 1690794392
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step39
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfce41b0841d15aa8aefbfde8619558fc60b434474a87859d359bdfa47c6c645
3
+ size 14244
trainer_state.json ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 39,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02564102564102564,
13
+ "grad_norm": 0.0,
14
+ "learning_rate": 0,
15
+ "loss": 8.3281,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.05128205128205128,
20
+ "grad_norm": 87.25187683105469,
21
+ "learning_rate": 0.0,
22
+ "loss": 10.0781,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.07692307692307693,
27
+ "grad_norm": 87.25187683105469,
28
+ "learning_rate": 0.0,
29
+ "loss": 3.9609,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.10256410256410256,
34
+ "grad_norm": 53.32879638671875,
35
+ "learning_rate": 1.5051499783199057e-05,
36
+ "loss": 5.457,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.1282051282051282,
41
+ "grad_norm": 106.99324798583984,
42
+ "learning_rate": 2.385606273598312e-05,
43
+ "loss": 2.8203,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.15384615384615385,
48
+ "grad_norm": 33.04688262939453,
49
+ "learning_rate": 3.0102999566398115e-05,
50
+ "loss": 1.75,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.1794871794871795,
55
+ "grad_norm": 63.9564208984375,
56
+ "learning_rate": 3.4948500216800935e-05,
57
+ "loss": 2.418,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.20512820512820512,
62
+ "grad_norm": 60.14704513549805,
63
+ "learning_rate": 3.890756251918218e-05,
64
+ "loss": 5.6406,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.23076923076923078,
69
+ "grad_norm": 77.91315460205078,
70
+ "learning_rate": 4.2254902000712836e-05,
71
+ "loss": 5.7148,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.2564102564102564,
76
+ "grad_norm": 82.38955688476562,
77
+ "learning_rate": 4.515449934959717e-05,
78
+ "loss": 7.3984,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.28205128205128205,
83
+ "grad_norm": 68.61566925048828,
84
+ "learning_rate": 4.771212547196624e-05,
85
+ "loss": 4.8672,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.3076923076923077,
90
+ "grad_norm": 93.55372619628906,
91
+ "learning_rate": 4.9999999999999996e-05,
92
+ "loss": 8.6016,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.3333333333333333,
97
+ "grad_norm": 38.4390754699707,
98
+ "learning_rate": 5.2069634257911246e-05,
99
+ "loss": 1.7266,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.358974358974359,
104
+ "grad_norm": 17.9733829498291,
105
+ "learning_rate": 5.3959062302381234e-05,
106
+ "loss": 2.2324,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.38461538461538464,
111
+ "grad_norm": 39.2911262512207,
112
+ "learning_rate": 5.5697167615341825e-05,
113
+ "loss": 2.7305,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.41025641025641024,
118
+ "grad_norm": 34.880802154541016,
119
+ "learning_rate": 5.730640178391189e-05,
120
+ "loss": 4.9688,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.4358974358974359,
125
+ "grad_norm": 14.430876731872559,
126
+ "learning_rate": 5.880456295278406e-05,
127
+ "loss": 2.082,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.46153846153846156,
132
+ "grad_norm": 18.182239532470703,
133
+ "learning_rate": 6.020599913279623e-05,
134
+ "loss": 1.2168,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.48717948717948717,
139
+ "grad_norm": 19.858905792236328,
140
+ "learning_rate": 6.15224460689137e-05,
141
+ "loss": 2.2441,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.5128205128205128,
146
+ "grad_norm": 30.2137451171875,
147
+ "learning_rate": 6.276362525516529e-05,
148
+ "loss": 3.3027,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.5384615384615384,
153
+ "grad_norm": 25.4908504486084,
154
+ "learning_rate": 6.393768004764143e-05,
155
+ "loss": 2.8242,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.5641025641025641,
160
+ "grad_norm": 16.74290657043457,
161
+ "learning_rate": 6.505149978319905e-05,
162
+ "loss": 2.4785,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.5897435897435898,
167
+ "grad_norm": 75.4117202758789,
168
+ "learning_rate": 6.611096473669595e-05,
169
+ "loss": 3.0977,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.6153846153846154,
174
+ "grad_norm": 29.400798797607422,
175
+ "learning_rate": 6.712113404111031e-05,
176
+ "loss": 2.5781,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.6410256410256411,
181
+ "grad_norm": 44.68231964111328,
182
+ "learning_rate": 6.808639180087963e-05,
183
+ "loss": 2.293,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.6666666666666666,
188
+ "grad_norm": 9.051566123962402,
189
+ "learning_rate": 6.90105620855803e-05,
190
+ "loss": 0.894,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.6923076923076923,
195
+ "grad_norm": 13.536922454833984,
196
+ "learning_rate": 6.989700043360187e-05,
197
+ "loss": 1.8252,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.717948717948718,
202
+ "grad_norm": 21.84697914123535,
203
+ "learning_rate": 7.074866739854089e-05,
204
+ "loss": 2.3457,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.7435897435897436,
209
+ "grad_norm": 13.119584083557129,
210
+ "learning_rate": 7.156818820794936e-05,
211
+ "loss": 2.248,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.7692307692307693,
216
+ "grad_norm": 8.631421089172363,
217
+ "learning_rate": 7.235790156711095e-05,
218
+ "loss": 0.7803,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.7948717948717948,
223
+ "grad_norm": 23.562847137451172,
224
+ "learning_rate": 7.31198998949478e-05,
225
+ "loss": 2.8242,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.8205128205128205,
230
+ "grad_norm": 17.66178321838379,
231
+ "learning_rate": 7.385606273598311e-05,
232
+ "loss": 1.0996,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.8461538461538461,
237
+ "grad_norm": 12.418828010559082,
238
+ "learning_rate": 7.456808469171363e-05,
239
+ "loss": 2.084,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.8717948717948718,
244
+ "grad_norm": 6.5270867347717285,
245
+ "learning_rate": 7.52574989159953e-05,
246
+ "loss": 0.7832,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.8974358974358975,
251
+ "grad_norm": 7.1268720626831055,
252
+ "learning_rate": 7.592569699389437e-05,
253
+ "loss": 0.5742,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.9230769230769231,
258
+ "grad_norm": 17.19321632385254,
259
+ "learning_rate": 7.657394585211275e-05,
260
+ "loss": 1.3506,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.9487179487179487,
265
+ "grad_norm": 8.55725383758545,
266
+ "learning_rate": 7.720340221751377e-05,
267
+ "loss": 1.1533,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.9743589743589743,
272
+ "grad_norm": 17.66382598876953,
273
+ "learning_rate": 7.781512503836436e-05,
274
+ "loss": 1.2773,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.0,
279
+ "grad_norm": 7.638050556182861,
280
+ "learning_rate": 7.841008620334975e-05,
281
+ "loss": 0.3796,
282
+ "step": 39
283
+ }
284
+ ],
285
+ "logging_steps": 1.0,
286
+ "max_steps": 39,
287
+ "num_input_tokens_seen": 0,
288
+ "num_train_epochs": 1,
289
+ "save_steps": 250,
290
+ "stateful_callbacks": {
291
+ "TrainerControl": {
292
+ "args": {
293
+ "should_epoch_stop": false,
294
+ "should_evaluate": false,
295
+ "should_log": false,
296
+ "should_save": true,
297
+ "should_training_stop": true
298
+ },
299
+ "attributes": {}
300
+ }
301
+ },
302
+ "total_flos": 0.0,
303
+ "train_batch_size": 1,
304
+ "trial_name": null,
305
+ "trial_params": null
306
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c03e6c16034c77a22cc77003680492c484b1fb70519da21b3019d3d53ecdc7a0
3
+ size 7416
zero_to_fp32.py ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ converted_tensors = {}
518
+ for name, tensor in state_dict.items():
519
+ tensor_id = id(tensor)
520
+ if tensor_id in converted_tensors:
521
+ shared_tensor = state_dict[converted_tensors[tensor_id]]
522
+ state_dict[name] = shared_tensor
523
+ else:
524
+ converted_tensors[tensor_id] = name
525
+ if return_empty_tensor:
526
+ state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
527
+ else:
528
+ state_dict[name] = tensor.contiguous()
529
+ return state_dict
530
+
531
+
532
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
533
+ tag=None,
534
+ exclude_frozen_parameters=False,
535
+ lazy_mode=False):
536
+ """
537
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
538
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
539
+ via a model hub.
540
+
541
+ Args:
542
+ - ``checkpoint_dir``: path to the desired checkpoint folder
543
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
544
+ - ``exclude_frozen_parameters``: exclude frozen parameters
545
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
546
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
547
+
548
+ Returns:
549
+ - pytorch ``state_dict``
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
554
+ # do the training and checkpoint saving
555
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
556
+ model = model.cpu() # move to cpu
557
+ model.load_state_dict(state_dict)
558
+ # submit to model hub or save the model to share with others
559
+
560
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
561
+ application. i.e. you will need to re-initialize the deepspeed engine, since
562
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
563
+
564
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
565
+
566
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
567
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
568
+ the checkpoint. Or you can load state_dict in lazy mode ::
569
+
570
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
572
+ for name, lazy_tensor in state_dict.item():
573
+ tensor = lazy_tensor.contiguous() # to cpu
574
+ print(name, tensor)
575
+ # del tensor to release memory if it no longer in use
576
+ """
577
+ if tag is None:
578
+ latest_path = os.path.join(checkpoint_dir, 'latest')
579
+ if os.path.isfile(latest_path):
580
+ with open(latest_path, 'r') as fd:
581
+ tag = fd.read().strip()
582
+ else:
583
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
584
+
585
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
586
+
587
+ if not os.path.isdir(ds_checkpoint_dir):
588
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
589
+
590
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
591
+ if lazy_mode:
592
+ return state_dict
593
+ else:
594
+ return to_torch_tensor(state_dict)
595
+
596
+
597
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
598
+ output_dir,
599
+ max_shard_size="5GB",
600
+ safe_serialization=False,
601
+ tag=None,
602
+ exclude_frozen_parameters=False):
603
+ """
604
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
605
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
606
+
607
+ Args:
608
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
609
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
610
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
611
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
612
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
613
+ - ``exclude_frozen_parameters``: exclude frozen parameters
614
+ """
615
+
616
+ # Dependency pre-check
617
+ if safe_serialization:
618
+ try:
619
+ from safetensors.torch import save_file
620
+ except ImportError:
621
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
622
+ raise
623
+ if max_shard_size is not None:
624
+ try:
625
+ from huggingface_hub import split_torch_state_dict_into_shards
626
+ except ImportError:
627
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
628
+ raise
629
+
630
+ # Convert zero checkpoint to state_dict
631
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
632
+ tag,
633
+ exclude_frozen_parameters,
634
+ lazy_mode=True)
635
+
636
+ # Shard the model if it is too big.
637
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
638
+ if max_shard_size is not None:
639
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
640
+ # an memory-efficient approach for sharding
641
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
642
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
643
+ filename_pattern=filename_pattern,
644
+ max_shard_size=max_shard_size)
645
+ else:
646
+ from collections import namedtuple
647
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
648
+ state_dict_split = StateDictSplit(is_sharded=False,
649
+ filename_to_tensors={weights_name: list(state_dict.keys())})
650
+
651
+ # Save the model by shard
652
+ os.makedirs(output_dir, exist_ok=True)
653
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
654
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
655
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
656
+ shard_state_dict = to_torch_tensor(shard_state_dict)
657
+ output_path = os.path.join(output_dir, shard_file)
658
+ if safe_serialization:
659
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
660
+ else:
661
+ torch.save(shard_state_dict, output_path)
662
+ # release the memory of current shard
663
+ for tensor_name in shard_state_dict:
664
+ del state_dict[tensor_name]
665
+ del shard_state_dict
666
+ gc.collect()
667
+
668
+ # Save index if sharded
669
+ if state_dict_split.is_sharded:
670
+ index = {
671
+ "metadata": state_dict_split.metadata,
672
+ "weight_map": state_dict_split.tensor_to_filename,
673
+ }
674
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
675
+ save_index_file = os.path.join(output_dir, save_index_file)
676
+ with open(save_index_file, "w", encoding="utf-8") as f:
677
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
678
+ f.write(content)
679
+
680
+
681
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
682
+ """
683
+ 1. Put the provided model to cpu
684
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
685
+ 3. Load it into the provided model
686
+
687
+ Args:
688
+ - ``model``: the model object to update
689
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
690
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
691
+
692
+ Returns:
693
+ - ``model`: modified model
694
+
695
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
696
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
697
+ conveniently placed for you in the checkpoint folder.
698
+
699
+ A typical usage might be ::
700
+
701
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
702
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
703
+ # submit to model hub or save the model to share with others
704
+
705
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
706
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
707
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
708
+
709
+ """
710
+ logger.info(f"Extracting fp32 weights")
711
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
712
+
713
+ logger.info(f"Overwriting model with fp32 weights")
714
+ model = model.cpu()
715
+ model.load_state_dict(state_dict, strict=False)
716
+
717
+ return model
718
+
719
+
720
+ if __name__ == "__main__":
721
+ parser = argparse.ArgumentParser()
722
+ parser.add_argument("checkpoint_dir",
723
+ type=str,
724
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
725
+ parser.add_argument("output_dir",
726
+ type=str,
727
+ help="directory to the pytorch fp32 state_dict output files"
728
+ "(e.g. path/checkpoint-12-output/)")
729
+ parser.add_argument(
730
+ "--max_shard_size",
731
+ type=str,
732
+ default="5GB",
733
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
734
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
735
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
736
+ "without CPU OOM issues.")
737
+ parser.add_argument(
738
+ "--safe_serialization",
739
+ default=False,
740
+ action='store_true',
741
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
742
+ parser.add_argument("-t",
743
+ "--tag",
744
+ type=str,
745
+ default=None,
746
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
747
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
748
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
749
+ args = parser.parse_args()
750
+
751
+ debug = args.debug
752
+
753
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
754
+ args.output_dir,
755
+ max_shard_size=args.max_shard_size,
756
+ safe_serialization=args.safe_serialization,
757
+ tag=args.tag,
758
+ exclude_frozen_parameters=args.exclude_frozen_parameters)