--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-TCR_data-cl-massive_all_1_1 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.7991474012133136 - name: F1 type: f1 value: 0.754097240958744 --- # scenario-TCR_data-cl-massive_all_1_1 This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 1.2577 - Accuracy: 0.7991 - F1: 0.7541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.585 | 0.56 | 5000 | 0.9018 | 0.7809 | 0.7207 | | 0.344 | 1.11 | 10000 | 0.9305 | 0.7891 | 0.7376 | | 0.2938 | 1.67 | 15000 | 0.9186 | 0.7905 | 0.7357 | | 0.1892 | 2.22 | 20000 | 1.0155 | 0.7918 | 0.7414 | | 0.1781 | 2.78 | 25000 | 1.0659 | 0.7916 | 0.7479 | | 0.1064 | 3.33 | 30000 | 1.1471 | 0.7987 | 0.7540 | | 0.1014 | 3.89 | 35000 | 1.1831 | 0.7983 | 0.7497 | | 0.0731 | 4.45 | 40000 | 1.2577 | 0.7991 | 0.7541 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3