happycoding commited on
Commit
b84f8a5
·
1 Parent(s): b489110

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1667.55 +/- 75.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c91273f8e7217b63a0fc47e889908c86aa314eccf648c235e363ddd60bf5fd5
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9247d84280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9247d84310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9247d843a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9247d84430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9247d844c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9247d84550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9247d845e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9247d84670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9247d84700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9247d84790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9247d84820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9247d848b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9247d85090>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674034289967690408,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGjxqr7yVYg/1X1APntumD9XVvi+k+qnPz0xCz/Iegu/5JBcP+c5Wz981e4+sRoNvXah4T7/NnG/HVOqPgzGCj8EkTE/2QWBv6R+UT/fBxe+7MExv21n0jzZsBu/qtNRPTHONj/GDgU/AEryPir8hb+OaVu8FxnHPcaVEj92fhI/iE3CvhM8gz8XBT8/a0YKv6XSlD7H4E2+pPZuP+59Wj7dlgm/I0zXv6SOpb4AhYW/i50UP/xyfr8LtE8/lxJ6vc0YMr+xkQw99Mkov/awP74xzjY/xg4FPwBK8j4q/IW/dP2HPlrggL+jZYk9oX/NP2curL68Bog+GkhmvkqOOjyH1Ak/eHrUvOV8AL8xNn+/MEG1vhTfoT9TUIC8lOhmP73xET/8rr4/UeZNvvR/mr4cDDW/GhAcv51KXT+V18c+LUCzv8YOBT9QPgfAjpB0P7LgED+Srf+8YP8QP97J9j4Pewc/S94AP6hZfj9yJv++n1NhPx68p72usr0/ekGPPnl8b7/SRUbAshKMv+MC07987Sk/lr+Hv+moID8/FHY+W5sxv74ZlTzMjie/qcXkujHONj/GDgU/AEryPir8hb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOTw22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAS8rWPQAAAACkh+u/AAAAAF/Xa70AAAAAh2n1PwAAAACWNlw8AAAAAGPZ4T8AAAAAKu9gvQAAAABxYuy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaWymtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPlzgT0AAAAA4VT/vwAAAACtU9+9AAAAAC4P4z8AAAAADlnnPAAAAACiSNs/AAAAAHxelD0AAAAAQfDgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEThrDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8aW48AAAAAN/d478AAAAAK/vePQAAAACH4vU/AAAAAIuXOj0AAAAAvQDoPwAAAAClfqO9AAAAABi37r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv9CQ3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuisSvgAAAADrFum/AAAAAFEbxD0AAAAA82UAQAAAAACUlUc9AAAAAO/V/T8AAAAA/BQIvgAAAABhzOC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWMtaNdZ7qMAWyUTegDjAF0lEdApzwJoM8YAXV9lChoBkdAlAUBXjlxO2gHTegDaAhHQKc9F212JSB1fZQoaAZHQJZzOA/cFhZoB03oA2gIR0CnP2J0nw5OdX2UKGgGR0CScfv6TGHYaAdN6ANoCEdAp0aNWGRFJHV9lChoBkdAljY4PbwjMWgHTegDaAhHQKdHzGxUvPF1fZQoaAZHQJbv3fWMCLdoB03oA2gIR0CnSN9WZJCjdX2UKGgGR0CaBmSidrftaAdN6ANoCEdAp0sXyZrpJXV9lChoBkdAmh2Uy+HrQmgHTegDaAhHQKdSLq33HrB1fZQoaAZHQJlLtGiHqNZoB03oA2gIR0CnU3Ak1MufdX2UKGgGR0CbIFInSfDlaAdN6ANoCEdAp1SBpcophHV9lChoBkdAl6NJa3ZwoGgHTegDaAhHQKdWsvQnhKl1fZQoaAZHQJb2Z24d6s1oB03oA2gIR0CnXgBa9sabdX2UKGgGR0CZdhyk9ECvaAdN6ANoCEdAp182mR/3FnV9lChoBkdAmJumaDwpfGgHTegDaAhHQKdgSTBZZB91fZQoaAZHQJb3X6Hj6vdoB03oA2gIR0CnYoY1gpjMdX2UKGgGR0CXnfUzKs+3aAdN6ANoCEdAp2nLXnQpnnV9lChoBkdAm8x+Vkc0cmgHTegDaAhHQKdrDOqvNeN1fZQoaAZHQJiSfE3sHB1oB03oA2gIR0CnbCXXqZ+hdX2UKGgGR0CXTw8RtgrpaAdN6ANoCEdAp25lGZuyeXV9lChoBkdAl/Oe0G/vfGgHTegDaAhHQKd4kjynUDx1fZQoaAZHQJlLcclw97poB03oA2gIR0CneiInBtUGdX2UKGgGR0CRJr1W8yvcaAdN6ANoCEdAp3s5frrxAnV9lChoBkdAlcRlJHy3C2gHTegDaAhHQKd9gRSxZ+x1fZQoaAZHQJPAylUIcBFoB03oA2gIR0CnhNQ4sEq2dX2UKGgGR0CRsqhew9q2aAdN6ANoCEdAp4YRjDsMRnV9lChoBkdAmVRFefI0ZWgHTegDaAhHQKeHJ8EV32V1fZQoaAZHQI7M0ihWYF9oB03oA2gIR0CniWN8ma6SdX2UKGgGR0CZZumOlwcYaAdN6ANoCEdAp5CWMMqjJ3V9lChoBkdAlQZBBRhttWgHTegDaAhHQKeRzqSowVV1fZQoaAZHQJwEL6GgzxhoB03oA2gIR0CnkuEkSmIkdX2UKGgGR0CaJpiSaEzwaAdN6ANoCEdAp5UUJv5xi3V9lChoBkdAlwm13t8eCGgHTegDaAhHQKecaW1twaR1fZQoaAZHQJdvgmJFb3ZoB03oA2gIR0CnnawblzU7dX2UKGgGR0CXP5tVaOghaAdN6ANoCEdAp57BamoBJnV9lChoBkdAmCE1XFLnLmgHTegDaAhHQKeg/rNW2gF1fZQoaAZHQJiuRL127nRoB03oA2gIR0CnqGBCtzS1dX2UKGgGR0CZifCTEBKdaAdN6ANoCEdAp6oFmBe5WnV9lChoBkdAk+DDrVvuPWgHTegDaAhHQKerlSqEOAl1fZQoaAZHQJbsnlhgE2ZoB03oA2gIR0Cnrudld1MedX2UKGgGR0CZEduuRs/IaAdN6ANoCEdAp7dv+Q2dd3V9lChoBkdAmQOC3gDRt2gHTegDaAhHQKe4p9jPOY91fZQoaAZHQJRr5KaoddVoB03oA2gIR0CnubcL0BfbdX2UKGgGR0CSaY1dxAB1aAdN6ANoCEdAp7volSjxkXV9lChoBkdAlwjkA1ejVWgHTegDaAhHQKfDG/nGKht1fZQoaAZHQJlKjtUn5SFoB03oA2gIR0CnxFNITXardX2UKGgGR0CaJjuXNTtLaAdN6ANoCEdAp8Vhoh6jWXV9lChoBkdAmTKbnX/YJ2gHTegDaAhHQKfHiry1/lR1fZQoaAZHQJbYl+/gzgxoB03oA2gIR0CnzquanaWYdX2UKGgGR0CXyJLJSzgNaAdN6ANoCEdAp8/dAVwgknV9lChoBkdAl4Zn2EkB0mgHTegDaAhHQKfQ5AmAskJ1fZQoaAZHQJbVu7Ackt5oB03oA2gIR0Cn0yBFmWdFdX2UKGgGR0CVo6Jxeb/faAdN6ANoCEdAp9pluHerMnV9lChoBkdAlWZ/RJEpiWgHTegDaAhHQKfbo7/XGwR1fZQoaAZHQJj4UcYIjW1oB03oA2gIR0Cn3Lq7AckudX2UKGgGR0CIqmVDa4+baAdN6ANoCEdAp97zMaCL/HV9lChoBkdAlJV+KGcnV2gHTegDaAhHQKfmMiaiKzl1fZQoaAZHQJT4LtWuHN5oB03oA2gIR0Cn52qhL5ARdX2UKGgGR0CYsgZ75VOsaAdN6ANoCEdAp+iCsjmjkHV9lChoBkdAmLkv3ai9I2gHTegDaAhHQKfq13NcGC91fZQoaAZHQJnMcsNDtw9oB03oA2gIR0Cn8hu+IuXedX2UKGgGR0CaZW4WUKRdaAdN6ANoCEdAp/NRSaVlgHV9lChoBkdAmpddtMwlB2gHTegDaAhHQKf0YL6UJOZ1fZQoaAZHQJxUQxVQyh1oB03oA2gIR0Cn9ptcW0qpdX2UKGgGR0CbjXlPrOZ9aAdN6ANoCEdAp/3UaKk2xnV9lChoBkdAmacS5mRNh2gHTegDaAhHQKf/BgXuVop1fZQoaAZHQJm9pPSDyvtoB03oA2gIR0CoABnHmzSkdX2UKGgGR0CanMzxwyZbaAdN6ANoCEdAqAJFcpsoD3V9lChoBkdAmxOHQUpNK2gHTegDaAhHQKgJd/wRXfZ1fZQoaAZHQJkxvEqDsdFoB03oA2gIR0CoCqup84PxdX2UKGgGR0CYvOI/Z/TcaAdN6ANoCEdAqAu92ki2UnV9lChoBkdAmhg+zyBkJGgHTegDaAhHQKgN7Bdld1N1fZQoaAZHQJpzCqT8pCtoB03oA2gIR0CoFRe2VmjCdX2UKGgGR0CZHP1VHWjHaAdN6ANoCEdAqBZQh6jWTXV9lChoBkdAltTJUHY6GWgHTegDaAhHQKgXbKq4pc51fZQoaAZHQJorCt+1Bt1oB03oA2gIR0CoGbCjL0SRdX2UKGgGR0CZMB5uIhyKaAdN6ANoCEdAqCEbtw71ZnV9lChoBkdAmaAGQGOdXmgHTegDaAhHQKgiVJ/XoTx1fZQoaAZHQJwUQHJLdvdoB03oA2gIR0CoI2spXp4bdX2UKGgGR0CYNC0Ltu1naAdN6ANoCEdAqCWrpgTh53V9lChoBkdAmp1nG4qgAmgHTegDaAhHQKgtKcyWRih1fZQoaAZHQJpCd+y7f51oB03oA2gIR0CoLnWVE/jbdX2UKGgGR0CaK0cwg1WKaAdN6ANoCEdAqC+DDO1OTXV9lChoBkdAmm4r4Ju2qmgHTegDaAhHQKgxs3BpHqh1fZQoaAZHQJfTlTUAks1oB03oA2gIR0CoOO6fBeoldX2UKGgGR0Ca0D36Q/5daAdN6ANoCEdAqDorohY/3XV9lChoBkdAmqElPva11GgHTegDaAhHQKg7PNHH3lF1fZQoaAZHQJ0HLwOOKfpoB03oA2gIR0CoPW4NZvDQdX2UKGgGR0Cap8NCJGe+aAdN6ANoCEdAqESSE8JUpHV9lChoBkdAmL5wi3XqaGgHTegDaAhHQKhFv7IDHOt1fZQoaAZHQJi0z59E1EVoB03oA2gIR0CoRtHMlkYodX2UKGgGR0CYeJBPbfxdaAdN6ANoCEdAqEkIIa99MXV9lChoBkdAnFKlLrX18WgHTegDaAhHQKhQOHbh3q11fZQoaAZHQJkMM+wC8vpoB03oA2gIR0CoUXgflp49dX2UKGgGR0CaV0VfeDWcaAdN6ANoCEdAqFKL9If8uXV9lChoBkdAnPQzGYKIBWgHTegDaAhHQKhU1yd4FA51fZQoaAZHQJoY9/WlMytoB03oA2gIR0CoXCE7nxJ/dX2UKGgGR0CdwrjW07bMaAdN6ANoCEdAqF1ed7OVxHV9lChoBkdAnZ5qjnFHa2gHTegDaAhHQKhebWOIZZV1fZQoaAZHQJtemJuVHFxoB03oA2gIR0CoYKPRqoIfdX2UKGgGR0CcYSw1BMSLaAdN6ANoCEdAqGfeQbMot3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4204c188025d596e57cba45334801acd8653fb82374861a62070d5f30be5e493
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dbcf63e89e3958a3ea65e55a0b091b90c8770dfd9609c56d17f409bfea9808e
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9247d84280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9247d84310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9247d843a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9247d84430>", "_build": "<function ActorCriticPolicy._build at 0x7f9247d844c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9247d84550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9247d845e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9247d84670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9247d84700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9247d84790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9247d84820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9247d848b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9247d85090>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674034289967690408, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGjxqr7yVYg/1X1APntumD9XVvi+k+qnPz0xCz/Iegu/5JBcP+c5Wz981e4+sRoNvXah4T7/NnG/HVOqPgzGCj8EkTE/2QWBv6R+UT/fBxe+7MExv21n0jzZsBu/qtNRPTHONj/GDgU/AEryPir8hb+OaVu8FxnHPcaVEj92fhI/iE3CvhM8gz8XBT8/a0YKv6XSlD7H4E2+pPZuP+59Wj7dlgm/I0zXv6SOpb4AhYW/i50UP/xyfr8LtE8/lxJ6vc0YMr+xkQw99Mkov/awP74xzjY/xg4FPwBK8j4q/IW/dP2HPlrggL+jZYk9oX/NP2curL68Bog+GkhmvkqOOjyH1Ak/eHrUvOV8AL8xNn+/MEG1vhTfoT9TUIC8lOhmP73xET/8rr4/UeZNvvR/mr4cDDW/GhAcv51KXT+V18c+LUCzv8YOBT9QPgfAjpB0P7LgED+Srf+8YP8QP97J9j4Pewc/S94AP6hZfj9yJv++n1NhPx68p72usr0/ekGPPnl8b7/SRUbAshKMv+MC07987Sk/lr+Hv+moID8/FHY+W5sxv74ZlTzMjie/qcXkujHONj/GDgU/AEryPir8hb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOTw22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAS8rWPQAAAACkh+u/AAAAAF/Xa70AAAAAh2n1PwAAAACWNlw8AAAAAGPZ4T8AAAAAKu9gvQAAAABxYuy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaWymtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPlzgT0AAAAA4VT/vwAAAACtU9+9AAAAAC4P4z8AAAAADlnnPAAAAACiSNs/AAAAAHxelD0AAAAAQfDgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEThrDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8aW48AAAAAN/d478AAAAAK/vePQAAAACH4vU/AAAAAIuXOj0AAAAAvQDoPwAAAAClfqO9AAAAABi37r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv9CQ3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuisSvgAAAADrFum/AAAAAFEbxD0AAAAA82UAQAAAAACUlUc9AAAAAO/V/T8AAAAA/BQIvgAAAABhzOC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWMtaNdZ7qMAWyUTegDjAF0lEdApzwJoM8YAXV9lChoBkdAlAUBXjlxO2gHTegDaAhHQKc9F212JSB1fZQoaAZHQJZzOA/cFhZoB03oA2gIR0CnP2J0nw5OdX2UKGgGR0CScfv6TGHYaAdN6ANoCEdAp0aNWGRFJHV9lChoBkdAljY4PbwjMWgHTegDaAhHQKdHzGxUvPF1fZQoaAZHQJbv3fWMCLdoB03oA2gIR0CnSN9WZJCjdX2UKGgGR0CaBmSidrftaAdN6ANoCEdAp0sXyZrpJXV9lChoBkdAmh2Uy+HrQmgHTegDaAhHQKdSLq33HrB1fZQoaAZHQJlLtGiHqNZoB03oA2gIR0CnU3Ak1MufdX2UKGgGR0CbIFInSfDlaAdN6ANoCEdAp1SBpcophHV9lChoBkdAl6NJa3ZwoGgHTegDaAhHQKdWsvQnhKl1fZQoaAZHQJb2Z24d6s1oB03oA2gIR0CnXgBa9sabdX2UKGgGR0CZdhyk9ECvaAdN6ANoCEdAp182mR/3FnV9lChoBkdAmJumaDwpfGgHTegDaAhHQKdgSTBZZB91fZQoaAZHQJb3X6Hj6vdoB03oA2gIR0CnYoY1gpjMdX2UKGgGR0CXnfUzKs+3aAdN6ANoCEdAp2nLXnQpnnV9lChoBkdAm8x+Vkc0cmgHTegDaAhHQKdrDOqvNeN1fZQoaAZHQJiSfE3sHB1oB03oA2gIR0CnbCXXqZ+hdX2UKGgGR0CXTw8RtgrpaAdN6ANoCEdAp25lGZuyeXV9lChoBkdAl/Oe0G/vfGgHTegDaAhHQKd4kjynUDx1fZQoaAZHQJlLcclw97poB03oA2gIR0CneiInBtUGdX2UKGgGR0CRJr1W8yvcaAdN6ANoCEdAp3s5frrxAnV9lChoBkdAlcRlJHy3C2gHTegDaAhHQKd9gRSxZ+x1fZQoaAZHQJPAylUIcBFoB03oA2gIR0CnhNQ4sEq2dX2UKGgGR0CRsqhew9q2aAdN6ANoCEdAp4YRjDsMRnV9lChoBkdAmVRFefI0ZWgHTegDaAhHQKeHJ8EV32V1fZQoaAZHQI7M0ihWYF9oB03oA2gIR0CniWN8ma6SdX2UKGgGR0CZZumOlwcYaAdN6ANoCEdAp5CWMMqjJ3V9lChoBkdAlQZBBRhttWgHTegDaAhHQKeRzqSowVV1fZQoaAZHQJwEL6GgzxhoB03oA2gIR0CnkuEkSmIkdX2UKGgGR0CaJpiSaEzwaAdN6ANoCEdAp5UUJv5xi3V9lChoBkdAlwm13t8eCGgHTegDaAhHQKecaW1twaR1fZQoaAZHQJdvgmJFb3ZoB03oA2gIR0CnnawblzU7dX2UKGgGR0CXP5tVaOghaAdN6ANoCEdAp57BamoBJnV9lChoBkdAmCE1XFLnLmgHTegDaAhHQKeg/rNW2gF1fZQoaAZHQJiuRL127nRoB03oA2gIR0CnqGBCtzS1dX2UKGgGR0CZifCTEBKdaAdN6ANoCEdAp6oFmBe5WnV9lChoBkdAk+DDrVvuPWgHTegDaAhHQKerlSqEOAl1fZQoaAZHQJbsnlhgE2ZoB03oA2gIR0Cnrudld1MedX2UKGgGR0CZEduuRs/IaAdN6ANoCEdAp7dv+Q2dd3V9lChoBkdAmQOC3gDRt2gHTegDaAhHQKe4p9jPOY91fZQoaAZHQJRr5KaoddVoB03oA2gIR0CnubcL0BfbdX2UKGgGR0CSaY1dxAB1aAdN6ANoCEdAp7volSjxkXV9lChoBkdAlwjkA1ejVWgHTegDaAhHQKfDG/nGKht1fZQoaAZHQJlKjtUn5SFoB03oA2gIR0CnxFNITXardX2UKGgGR0CaJjuXNTtLaAdN6ANoCEdAp8Vhoh6jWXV9lChoBkdAmTKbnX/YJ2gHTegDaAhHQKfHiry1/lR1fZQoaAZHQJbYl+/gzgxoB03oA2gIR0CnzquanaWYdX2UKGgGR0CXyJLJSzgNaAdN6ANoCEdAp8/dAVwgknV9lChoBkdAl4Zn2EkB0mgHTegDaAhHQKfQ5AmAskJ1fZQoaAZHQJbVu7Ackt5oB03oA2gIR0Cn0yBFmWdFdX2UKGgGR0CVo6Jxeb/faAdN6ANoCEdAp9pluHerMnV9lChoBkdAlWZ/RJEpiWgHTegDaAhHQKfbo7/XGwR1fZQoaAZHQJj4UcYIjW1oB03oA2gIR0Cn3Lq7AckudX2UKGgGR0CIqmVDa4+baAdN6ANoCEdAp97zMaCL/HV9lChoBkdAlJV+KGcnV2gHTegDaAhHQKfmMiaiKzl1fZQoaAZHQJT4LtWuHN5oB03oA2gIR0Cn52qhL5ARdX2UKGgGR0CYsgZ75VOsaAdN6ANoCEdAp+iCsjmjkHV9lChoBkdAmLkv3ai9I2gHTegDaAhHQKfq13NcGC91fZQoaAZHQJnMcsNDtw9oB03oA2gIR0Cn8hu+IuXedX2UKGgGR0CaZW4WUKRdaAdN6ANoCEdAp/NRSaVlgHV9lChoBkdAmpddtMwlB2gHTegDaAhHQKf0YL6UJOZ1fZQoaAZHQJxUQxVQyh1oB03oA2gIR0Cn9ptcW0qpdX2UKGgGR0CbjXlPrOZ9aAdN6ANoCEdAp/3UaKk2xnV9lChoBkdAmacS5mRNh2gHTegDaAhHQKf/BgXuVop1fZQoaAZHQJm9pPSDyvtoB03oA2gIR0CoABnHmzSkdX2UKGgGR0CanMzxwyZbaAdN6ANoCEdAqAJFcpsoD3V9lChoBkdAmxOHQUpNK2gHTegDaAhHQKgJd/wRXfZ1fZQoaAZHQJkxvEqDsdFoB03oA2gIR0CoCqup84PxdX2UKGgGR0CYvOI/Z/TcaAdN6ANoCEdAqAu92ki2UnV9lChoBkdAmhg+zyBkJGgHTegDaAhHQKgN7Bdld1N1fZQoaAZHQJpzCqT8pCtoB03oA2gIR0CoFRe2VmjCdX2UKGgGR0CZHP1VHWjHaAdN6ANoCEdAqBZQh6jWTXV9lChoBkdAltTJUHY6GWgHTegDaAhHQKgXbKq4pc51fZQoaAZHQJorCt+1Bt1oB03oA2gIR0CoGbCjL0SRdX2UKGgGR0CZMB5uIhyKaAdN6ANoCEdAqCEbtw71ZnV9lChoBkdAmaAGQGOdXmgHTegDaAhHQKgiVJ/XoTx1fZQoaAZHQJwUQHJLdvdoB03oA2gIR0CoI2spXp4bdX2UKGgGR0CYNC0Ltu1naAdN6ANoCEdAqCWrpgTh53V9lChoBkdAmp1nG4qgAmgHTegDaAhHQKgtKcyWRih1fZQoaAZHQJpCd+y7f51oB03oA2gIR0CoLnWVE/jbdX2UKGgGR0CaK0cwg1WKaAdN6ANoCEdAqC+DDO1OTXV9lChoBkdAmm4r4Ju2qmgHTegDaAhHQKgxs3BpHqh1fZQoaAZHQJfTlTUAks1oB03oA2gIR0CoOO6fBeoldX2UKGgGR0Ca0D36Q/5daAdN6ANoCEdAqDorohY/3XV9lChoBkdAmqElPva11GgHTegDaAhHQKg7PNHH3lF1fZQoaAZHQJ0HLwOOKfpoB03oA2gIR0CoPW4NZvDQdX2UKGgGR0Cap8NCJGe+aAdN6ANoCEdAqESSE8JUpHV9lChoBkdAmL5wi3XqaGgHTegDaAhHQKhFv7IDHOt1fZQoaAZHQJi0z59E1EVoB03oA2gIR0CoRtHMlkYodX2UKGgGR0CYeJBPbfxdaAdN6ANoCEdAqEkIIa99MXV9lChoBkdAnFKlLrX18WgHTegDaAhHQKhQOHbh3q11fZQoaAZHQJkMM+wC8vpoB03oA2gIR0CoUXgflp49dX2UKGgGR0CaV0VfeDWcaAdN6ANoCEdAqFKL9If8uXV9lChoBkdAnPQzGYKIBWgHTegDaAhHQKhU1yd4FA51fZQoaAZHQJoY9/WlMytoB03oA2gIR0CoXCE7nxJ/dX2UKGgGR0CdwrjW07bMaAdN6ANoCEdAqF1ed7OVxHV9lChoBkdAnZ5qjnFHa2gHTegDaAhHQKhebWOIZZV1fZQoaAZHQJtemJuVHFxoB03oA2gIR0CoYKPRqoIfdX2UKGgGR0CcYSw1BMSLaAdN6ANoCEdAqGfeQbMot3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (990 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1667.5474432375281, "std_reward": 75.51987316926628, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T10:24:01.126188"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6d6ee40abc32301166bf81844637ebe1451af7f3907177ffa6bb76ddc246353
3
+ size 2521