Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
4 |
+
tags:
|
5 |
+
- TinyLlama
|
6 |
+
- QLoRA
|
7 |
+
- Politics
|
8 |
+
- News
|
9 |
+
- sft
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
pipeline_tag: text-generation
|
13 |
---
|
14 |
+
|
15 |
+
# TinyNewsLlama-1.1B
|
16 |
+
|
17 |
+
TinyNewsLlama-1.1B is a QLoRA SFT fine-tune of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) using a sample of a concentrated version of the [bigNews] (https://paperswithcode.com/dataset/bignews) Dataset. The model was fine-tuned for ~12h on one A100 40GB on ~125M tokens.
|
18 |
+
|
19 |
+
The goal of this project is to study the potential for improving the domain-specific (in this case political) knowledge of small (<3B) LLMs by concentrating the training datasets TF-IDF in respect to the underlying Topics found in the origianl Dataset.
|
20 |
+
|
21 |
+
The used training data contains political news articles from **The New York Times**, **USA Today** and **The Washington Times**. The concentrated BigNews Dataset as well as more information about the used sample will soon be added.
|
22 |
+
|
23 |
+
|
24 |
+
## 💻 Usage
|
25 |
+
|
26 |
+
```python
|
27 |
+
!pip install -qU transformers accelerate
|
28 |
+
from transformers import AutoTokenizer
|
29 |
+
import transformers
|
30 |
+
import torch
|
31 |
+
model = "h4rz3rk4s3/TinyNewsLlama-1.1B"
|
32 |
+
messages = [
|
33 |
+
{
|
34 |
+
"role": "system",
|
35 |
+
"content": "You are a an experienced journalist.",
|
36 |
+
},
|
37 |
+
{"role": "user", "content": "Write a short article on Brexit and it's impact on the European Union."},
|
38 |
+
]
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
41 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
42 |
+
pipeline = transformers.pipeline(
|
43 |
+
"text-generation",
|
44 |
+
model=model,
|
45 |
+
device_map="auto",
|
46 |
+
)
|
47 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
48 |
+
print(outputs[0]["generated_text"])
|
49 |
+
```
|