Safetensors
mistral
h-j-han commited on
Commit
f267da1
Β·
verified Β·
1 Parent(s): c798dd1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -39,7 +39,7 @@ These are the merged version: after training the adapters, we merge the original
39
  ```python
40
  from transformers import AutoModelForCausalLM, AutoTokenizer
41
  # model_name = "mistralai/Mistral-7B-v0.1" # Base Model
42
- model_name = "h-j-han/Mistral-7B-VocADT-50k-Mixed" # Vocabulary Adapted Model
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
45
  prefix = "\nEnglish: Hello \nKorean: μ•ˆλ…•ν•˜μ„Έμš” \nEnglish: Thank you\nKorean: κ³ λ§™μŠ΅λ‹ˆλ‹€\nEnglish: "
@@ -49,7 +49,7 @@ prompt = prefix + line + suffix
49
  inputs = tokenizer(prompt, return_tensors="pt")
50
  for item in inputs:
51
  inputs[item] = inputs[item].cuda()
52
- outputs = model.generate(**inputs, max_new_tokens=88)
53
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
54
  # Base Model Output: "λ‚˜λŠ” ν•™" # This short incomplete phrase in Korean is 5 tokens for the base model.
55
  # VocADT Output: "μ €λŠ” ν•™μƒμž…λ‹ˆλ‹€." # Complete and good output within 5 tokens
 
39
  ```python
40
  from transformers import AutoModelForCausalLM, AutoTokenizer
41
  # model_name = "mistralai/Mistral-7B-v0.1" # Base Model
42
+ model_name = "h-j-han/Mistral-7B-VocADT-50k-All" # Vocabulary Adapted Model
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
45
  prefix = "\nEnglish: Hello \nKorean: μ•ˆλ…•ν•˜μ„Έμš” \nEnglish: Thank you\nKorean: κ³ λ§™μŠ΅λ‹ˆλ‹€\nEnglish: "
 
49
  inputs = tokenizer(prompt, return_tensors="pt")
50
  for item in inputs:
51
  inputs[item] = inputs[item].cuda()
52
+ outputs = model.generate(**inputs, max_new_tokens=5)
53
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
54
  # Base Model Output: "λ‚˜λŠ” ν•™" # This short incomplete phrase in Korean is 5 tokens for the base model.
55
  # VocADT Output: "μ €λŠ” ν•™μƒμž…λ‹ˆλ‹€." # Complete and good output within 5 tokens