h-j-han commited on
Commit
f35dbfc
·
1 Parent(s): 3aff43c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md CHANGED
@@ -1,3 +1,69 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ ---
5
+ license: mit
6
+ datasets:
7
+ - allenai/MADLAD-400
8
+ language:
9
+ - en
10
+ - ru
11
+ - bg
12
+ - uk
13
+ - kk
14
+ base_model:
15
+ - meta-llama/Llama-2-7b-hf
16
+ ---
17
+ VocADT is a solution for vocabulary adaptation using adapter modules that are trained to learn the optimal linear combination of existing embeddings while keeping the model’s weights fixed.
18
+ VocADT offers a flexible and scalable solution without requiring external resources or language constraints.
19
+
20
+
21
+ ## New Vocabulary Adapted Models
22
+ Only the input/output embeddings are replaced, while all other original weights of base model remain fixed.
23
+ These are the merged version: after training the adapters, we merge the original embeddings with the adapter to generate the new embeddings.
24
+ | Name | Adapted Model | Base Model | New Vocab Size | Focused Languages |
25
+ |---|---|---|---|---|
26
+ | VocADT-Latin-Mistral | [h-j-han/Mistral-7B-VocADT-50k-Latin](https://huggingface.co/h-j-han/Mistral-7B-VocADT-50k-Latin) | [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50k | Swahili (sw), Indonesian (id), Estonian (et), Haitian Creole (ht), English (en)|
27
+ | VocADT-Mixed-Mistral | [h-j-han/Mistral-7B-VocADT-50k-Mixed](https://huggingface.co/h-j-han/Mistral-7B-VocADT-50k-Mixed) | [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50k | Korean (ko), Greek (el), Russian (ru), Bulgarian (bg), English (en) |
28
+ | VocADT-Cyrillic-Mistral | [h-j-han/Mistral-7B-VocADT-50k-Cyrillic](https://huggingface.co/h-j-han/Mistral-7B-VocADT-50k-Cyrillic) | [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50k | Russian (ru), Bulgarian (bg), Ukrainian (uk), Kazakh (kk), English (en) |
29
+ |||||
30
+ | VocADT-Latin-LLama | [h-j-han/Llama2-7B-VocADT-50k-Latin](https://huggingface.co/h-j-han/Llama2-7B-VocADT-50k-Latin) | [Llama](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 50k | Swahili (sw), Indonesian (id), Estonian (et), Haitian Creole (ht), English (en)|
31
+ | VocADT-Mixed-LLama | [h-j-han/Llama2-7B-VocADT-50k-Mixed](https://huggingface.co/h-j-han/Llama2-7B-VocADT-50k-Mixed) | [Llama](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 50k | Korean (ko), Greek (el), Russian (ru), Bulgarian (bg), English (en) |
32
+ | VocADT-Cyrillic-LLama | [h-j-han/Llama2-7B-VocADT-50k-Cyrillic](https://huggingface.co/h-j-han/Llama2-7B-VocADT-50k-Cyrillic) | [Llama](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 50k | Russian (ru), Bulgarian (bg), Ukrainian (uk), Kazakh (kk), English (en) |
33
+
34
+
35
+ ## Quick Start
36
+ ```python
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+
39
+ # model_name = "meta-llama/Llama-2-7b-hf" # Base Model
40
+ model_name = "h-j-han/Llama2-7B-VocADT-50k-Cyrillic" # Vocabulary Adapted Model
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
42
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
43
+
44
+ prefix = "\nEnglish: Hello!\nUkrainian: Добрий день!\nEnglish: How are you?\nUkrainian: Як справи?\nEnglish: "
45
+ line = "Do you speak English?"
46
+ suffix = f"\nUkrainian:"
47
+ prompt = prefix + line + suffix
48
+
49
+ inputs = tokenizer(prompt, return_tensors="pt")
50
+ for item in inputs:
51
+ inputs[item] = inputs[item].cuda()
52
+ outputs = model.generate(**inputs, max_new_tokens=6)
53
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
54
+ ```
55
+
56
+ ## Reference
57
+ We provide code in Github repo: https://github.com/h-j-han/VocADT
58
+ Also, please find details in this paper:
59
+ ```
60
+ @misc{han2024vocadt,
61
+ title={Adapters for Altering LLM Vocabularies: What Languages Benefit the Most?},
62
+ author={HyoJung Han and Akiko Eriguchi and Haoran Xu and Hieu Hoang and Marine Carpuat and Huda Khayrallah},
63
+ year={2024},
64
+ eprint={2410.09644},
65
+ archivePrefix={arXiv},
66
+ primaryClass={cs.CL},
67
+ url={https://arxiv.org/abs/2410.09644},
68
+ }
69
+ ```