# Not a contribution # Changes made by NVIDIA CORPORATION & AFFILIATES enabling or otherwise documented as # NVIDIA-proprietary are not a contribution and subject to the following terms and conditions: # SPDX-FileCopyrightText: Copyright (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import signal import multiprocessing import os import numpy as np import pandas as pd import tensorflow as tf import torch import pickle import easydict from functools import partial from scipy.interpolate import interp1d from argparse import ArgumentParser from tqdm import tqdm from typing import Any, Dict, List, Optional from waymo_open_dataset.protos import scenario_pb2 MIN_VALID_STEPS = 15 _polygon_types = ['VEHICLE', 'BIKE', 'BUS', 'PEDESTRIAN'] _polygon_light_type = ['LANE_STATE_STOP', 'LANE_STATE_GO', 'LANE_STATE_CAUTION', 'LANE_STATE_UNKNOWN'] _point_types = ['DASH_SOLID_YELLOW', 'DASH_SOLID_WHITE', 'DASHED_WHITE', 'DASHED_YELLOW', 'DOUBLE_SOLID_YELLOW', 'DOUBLE_SOLID_WHITE', 'DOUBLE_DASH_YELLOW', 'DOUBLE_DASH_WHITE', 'SOLID_YELLOW', 'SOLID_WHITE', 'SOLID_DASH_WHITE', 'SOLID_DASH_YELLOW', 'EDGE', 'NONE', 'UNKNOWN', 'CROSSWALK', 'CENTERLINE'] _polygon_to_polygon_types = ['NONE', 'PRED', 'SUCC', 'LEFT', 'RIGHT'] Lane_type_hash = { 4: "BIKE", 3: "VEHICLE", 2: "VEHICLE", 1: "BUS" } boundary_type_hash = { 5: "UNKNOWN", 6: "DASHED_WHITE", 7: "SOLID_WHITE", 8: "DOUBLE_DASH_WHITE", 9: "DASHED_YELLOW", 10: "DOUBLE_DASH_YELLOW", 11: "SOLID_YELLOW", 12: "DOUBLE_SOLID_YELLOW", 13: "DASH_SOLID_YELLOW", 14: "UNKNOWN", 15: "EDGE", 16: "EDGE" } def safe_list_index(ls: List[Any], elem: Any) -> Optional[int]: try: return ls.index(elem) except ValueError: return None # def get_agent_features(df: pd.DataFrame, av_id, num_historical_steps=11, dim=3, num_steps=91) -> Dict[str, Any]: # if args.disable_invalid: # filter out agents that are unseen during the historical time steps # historical_df = df[df['timestep'] == num_historical_steps-1] # extract the timestep==10 (current) # agent_ids = list(historical_df['track_id'].unique()) # these agents are seen at timestep==10 (current) # df = df[df['track_id'].isin(agent_ids)] # remove other agents # else: # agent_ids = list(df['track_id'].unique()) # num_agents = len(agent_ids) # # initialization # valid_mask = torch.zeros(num_agents, num_steps, dtype=torch.bool) # current_valid_mask = torch.zeros(num_agents, dtype=torch.bool) # predict_mask = torch.zeros(num_agents, num_steps, dtype=torch.bool) # agent_id: List[Optional[str]] = [None] * num_agents # agent_type = torch.zeros(num_agents, dtype=torch.uint8) # agent_category = torch.zeros(num_agents, dtype=torch.uint8) # position = torch.zeros(num_agents, num_steps, dim, dtype=torch.float) # heading = torch.zeros(num_agents, num_steps, dtype=torch.float) # velocity = torch.zeros(num_agents, num_steps, dim, dtype=torch.float) # shape = torch.zeros(num_agents, num_steps, dim, dtype=torch.float) # for track_id, track_df in df.groupby('track_id'): # agent_idx = agent_ids.index(track_id) # all_agent_steps = track_df['timestep'].values # valid_agent_steps = all_agent_steps[track_df['validity'].astype(np.bool_)].astype(np.int32) # valid_mask[agent_idx, valid_agent_steps] = True # current_valid_mask[agent_idx] = valid_mask[agent_idx, num_historical_steps - 1] # current timestep 10 # if args.disable_invalid: # predict_mask[agent_idx, valid_agent_steps] = True # else: # predict_mask[agent_idx] = True # predict_mask[agent_idx, :num_historical_steps] = False # if not current_valid_mask[agent_idx]: # predict_mask[agent_idx, num_historical_steps:] = False # # TODO: why using vector_repr? # if vector_repr: # a time step t is valid only when both t and t-1 are valid # valid_mask[agent_idx, 1 : num_historical_steps] = ( # valid_mask[agent_idx, : num_historical_steps - 1] & # valid_mask[agent_idx, 1 : num_historical_steps]) # valid_mask[agent_idx, 0] = False # agent_id[agent_idx] = track_id # agent_type[agent_idx] = _agent_types.index(track_df['object_type'].values[0]) # agent_category[agent_idx] = track_df['object_category'].values[0] # position[agent_idx, valid_agent_steps, :3] = torch.from_numpy(np.stack([track_df['position_x'].values[valid_agent_steps], # track_df['position_y'].values[valid_agent_steps], # track_df['position_z'].values[valid_agent_steps]], # axis=-1)).float() # heading[agent_idx, valid_agent_steps] = torch.from_numpy(track_df['heading'].values[valid_agent_steps]).float() # velocity[agent_idx, valid_agent_steps, :2] = torch.from_numpy(np.stack([track_df['velocity_x'].values[valid_agent_steps], # track_df['velocity_y'].values[valid_agent_steps]], # axis=-1)).float() # shape[agent_idx, valid_agent_steps, :3] = torch.from_numpy(np.stack([track_df['length'].values[valid_agent_steps], # track_df['width'].values[valid_agent_steps], # track_df["height"].values[valid_agent_steps]], # axis=-1)).float() # av_idx = agent_id.index(av_id) # if split == 'test': # predict_mask[current_valid_mask # | (agent_category == 2) # | (agent_category == 3), num_historical_steps:] = True # return { # 'num_nodes': num_agents, # 'av_index': av_idx, # 'valid_mask': valid_mask, # 'predict_mask': predict_mask, # 'id': agent_id, # 'type': agent_type, # 'category': agent_category, # 'position': position, # 'heading': heading, # 'velocity': velocity, # 'shape': shape # } def get_agent_features(track_infos: Dict[str, np.ndarray], av_id: int, num_historical_steps: int, num_steps: int) -> Dict[str, Any]: agent_idx_to_add = [] for i in range(len(track_infos['object_id'])): is_visible = track_infos['valid'][i, num_historical_steps - 1] valid_steps = np.where(track_infos['valid'][i])[0] valid_start, valid_end = valid_steps[0], valid_steps[-1] is_valid = (valid_end - valid_start + 1) >= MIN_VALID_STEPS if (is_visible or not args.disable_invalid) and is_valid: agent_idx_to_add.append(i) num_agents = len(agent_idx_to_add) out_dict = { 'num_nodes': num_agents, 'valid_mask': torch.zeros(num_agents, num_steps, dtype=torch.bool), 'role': torch.zeros(num_agents, 3, dtype=torch.bool), 'id': torch.zeros(num_agents, dtype=torch.int64) - 1, 'type': torch.zeros(num_agents, dtype=torch.uint8), 'category': torch.zeros(num_agents, dtype=torch.uint8), 'position': torch.zeros(num_agents, num_steps, 3, dtype=torch.float), 'heading': torch.zeros(num_agents, num_steps, dtype=torch.float), 'velocity': torch.zeros(num_agents, num_steps, 2, dtype=torch.float), 'shape': torch.zeros(num_agents, num_steps, 3, dtype=torch.float), } for i, idx in enumerate(agent_idx_to_add): out_dict['role'][i] = torch.from_numpy(track_infos['role'][idx]) out_dict['id'][i] = track_infos['object_id'][idx] out_dict['type'][i] = track_infos['object_type'][idx] out_dict['category'][i] = idx in track_infos['tracks_to_predict'] valid = track_infos["valid"][idx] # [n_step] states = track_infos["states"][idx] object_shape = states[:, 3:6] # [n_step, 3], length, width, height object_shape = object_shape[valid].mean(axis=0) # [3] out_dict["shape"][i] = torch.from_numpy(object_shape) valid_steps = np.where(valid)[0] position = states[:, :3] # [n_step, dim], x, y, z velocity = states[:, 7:9] # [n_step, 2], vx, vy heading = states[:, 6] # [n_step], heading # valid.sum() should > 1: t_start, t_end = valid_steps[0], valid_steps[-1] f_pos = interp1d(valid_steps, position[valid], axis=0) f_vel = interp1d(valid_steps, velocity[valid], axis=0) f_yaw = interp1d(valid_steps, np.unwrap(heading[valid], axis=0), axis=0) t_in = np.arange(t_start, t_end + 1) out_dict["valid_mask"][i, t_start : t_end + 1] = True out_dict["position"][i, t_start : t_end + 1] = torch.from_numpy(f_pos(t_in)) out_dict["velocity"][i, t_start : t_end + 1] = torch.from_numpy(f_vel(t_in)) out_dict["heading"][i, t_start : t_end + 1] = torch.from_numpy(f_yaw(t_in)) out_dict['av_idx'] = out_dict['id'].tolist().index(av_id) return out_dict def get_map_features(map_infos, tf_current_light, dim=3): lane_segments = map_infos['lane'] all_polylines = map_infos["all_polylines"] crosswalks = map_infos['crosswalk'] road_edges = map_infos['road_edge'] road_lines = map_infos['road_line'] lane_segment_ids = [info["id"] for info in lane_segments] cross_walk_ids = [info["id"] for info in crosswalks] road_edge_ids = [info["id"] for info in road_edges] road_line_ids = [info["id"] for info in road_lines] polygon_ids = lane_segment_ids + road_edge_ids + road_line_ids + cross_walk_ids num_polygons = len(lane_segment_ids) + len(road_edge_ids) + len(road_line_ids) + len(cross_walk_ids) # initialization polygon_type = torch.zeros(num_polygons, dtype=torch.uint8) polygon_light_type = torch.ones(num_polygons, dtype=torch.uint8) * 3 # list of (num_of_segments,), each element has shape of (num_of_points_of_current_segment - 1, dim) point_position: List[Optional[torch.Tensor]] = [None] * num_polygons point_orientation: List[Optional[torch.Tensor]] = [None] * num_polygons point_magnitude: List[Optional[torch.Tensor]] = [None] * num_polygons point_height: List[Optional[torch.Tensor]] = [None] * num_polygons point_type: List[Optional[torch.Tensor]] = [None] * num_polygons for lane_segment in lane_segments: lane_segment = easydict.EasyDict(lane_segment) lane_segment_idx = polygon_ids.index(lane_segment.id) polyline_index = lane_segment.polyline_index # (start index of point in current scenario, end index of point in current scenario) centerline = all_polylines[polyline_index[0] : polyline_index[1], :] # (num_of_points_of_current_segment, 5) centerline = torch.from_numpy(centerline).float() polygon_type[lane_segment_idx] = _polygon_types.index(Lane_type_hash[lane_segment.type]) res = tf_current_light[tf_current_light["lane_id"] == str(lane_segment.id)] if len(res) != 0: polygon_light_type[lane_segment_idx] = _polygon_light_type.index(res["state"].item()) point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0) # (num_of_points_of_current_segment - 1, 3) center_vectors = centerline[1:] - centerline[:-1] # (num_of_points_of_current_segment - 1, 5) point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0) # (num_of_points_of_current_segment - 1,) point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1) # (num_of_points_of_current_segment - 1,) point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0) # (num_of_points_of_current_segment - 1,) center_type = _point_types.index('CENTERLINE') point_type[lane_segment_idx] = torch.cat( [torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0) for lane_segment in road_edges: lane_segment = easydict.EasyDict(lane_segment) lane_segment_idx = polygon_ids.index(lane_segment.id) polyline_index = lane_segment.polyline_index centerline = all_polylines[polyline_index[0] : polyline_index[1], :] centerline = torch.from_numpy(centerline).float() polygon_type[lane_segment_idx] = _polygon_types.index("VEHICLE") point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0) center_vectors = centerline[1:] - centerline[:-1] point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0) point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1) point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0) center_type = _point_types.index('EDGE') point_type[lane_segment_idx] = torch.cat( [torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0) for lane_segment in road_lines: lane_segment = easydict.EasyDict(lane_segment) lane_segment_idx = polygon_ids.index(lane_segment.id) polyline_index = lane_segment.polyline_index centerline = all_polylines[polyline_index[0] : polyline_index[1], :] centerline = torch.from_numpy(centerline).float() polygon_type[lane_segment_idx] = _polygon_types.index("VEHICLE") point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0) center_vectors = centerline[1:] - centerline[:-1] point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0) point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1) point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0) center_type = _point_types.index(boundary_type_hash[lane_segment.type]) point_type[lane_segment_idx] = torch.cat( [torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0) for crosswalk in crosswalks: crosswalk = easydict.EasyDict(crosswalk) lane_segment_idx = polygon_ids.index(crosswalk.id) polyline_index = crosswalk.polyline_index centerline = all_polylines[polyline_index[0] : polyline_index[1], :] centerline = torch.from_numpy(centerline).float() polygon_type[lane_segment_idx] = _polygon_types.index("PEDESTRIAN") point_position[lane_segment_idx] = torch.cat([centerline[:-1, :dim]], dim=0) center_vectors = centerline[1:] - centerline[:-1] point_orientation[lane_segment_idx] = torch.cat([torch.atan2(center_vectors[:, 1], center_vectors[:, 0])], dim=0) point_magnitude[lane_segment_idx] = torch.norm(torch.cat([center_vectors[:, :2]], dim=0), p=2, dim=-1) point_height[lane_segment_idx] = torch.cat([center_vectors[:, 2]], dim=0) center_type = _point_types.index("CROSSWALK") point_type[lane_segment_idx] = torch.cat( [torch.full((len(center_vectors),), center_type, dtype=torch.uint8)], dim=0) # (num_of_segments,), each element represents the number of points of the segment num_points = torch.tensor([point.size(0) for point in point_position], dtype=torch.long) # (2, total_num_of_points_of_all_segments), store the point index of segment and its corresponding segment index # e.g. a scenario has 203 segments, and totally 14039 points: # tensor([[ 0, 1, 2, ..., 14927, 14928, 14929], # [ 0, 0, 0, ..., 202, 202, 202]]) => polygon_ids.index(lane_segment.id) point_to_polygon_edge_index = torch.stack( [torch.arange(num_points.sum(), dtype=torch.long), torch.arange(num_polygons, dtype=torch.long).repeat_interleave(num_points)], dim=0) # list of (num_of_lane_segments,) polygon_to_polygon_edge_index = [] # list of (num_of_lane_segments,) polygon_to_polygon_type = [] for lane_segment in lane_segments: lane_segment = easydict.EasyDict(lane_segment) lane_segment_idx = polygon_ids.index(lane_segment.id) pred_inds = [] for pred in lane_segment.entry_lanes: pred_idx = safe_list_index(polygon_ids, pred) if pred_idx is not None: pred_inds.append(pred_idx) if len(pred_inds) != 0: polygon_to_polygon_edge_index.append( torch.stack([torch.tensor(pred_inds, dtype=torch.long), torch.full((len(pred_inds),), lane_segment_idx, dtype=torch.long)], dim=0)) polygon_to_polygon_type.append( torch.full((len(pred_inds),), _polygon_to_polygon_types.index('PRED'), dtype=torch.uint8)) succ_inds = [] for succ in lane_segment.exit_lanes: succ_idx = safe_list_index(polygon_ids, succ) if succ_idx is not None: succ_inds.append(succ_idx) if len(succ_inds) != 0: polygon_to_polygon_edge_index.append( torch.stack([torch.tensor(succ_inds, dtype=torch.long), torch.full((len(succ_inds),), lane_segment_idx, dtype=torch.long)], dim=0)) polygon_to_polygon_type.append( torch.full((len(succ_inds),), _polygon_to_polygon_types.index('SUCC'), dtype=torch.uint8)) if len(lane_segment.left_neighbors) != 0: left_neighbor_ids = lane_segment.left_neighbors for left_neighbor_id in left_neighbor_ids: left_idx = safe_list_index(polygon_ids, left_neighbor_id) if left_idx is not None: polygon_to_polygon_edge_index.append( torch.tensor([[left_idx], [lane_segment_idx]], dtype=torch.long)) polygon_to_polygon_type.append( torch.tensor([_polygon_to_polygon_types.index('LEFT')], dtype=torch.uint8)) if len(lane_segment.right_neighbors) != 0: right_neighbor_ids = lane_segment.right_neighbors for right_neighbor_id in right_neighbor_ids: right_idx = safe_list_index(polygon_ids, right_neighbor_id) if right_idx is not None: polygon_to_polygon_edge_index.append( torch.tensor([[right_idx], [lane_segment_idx]], dtype=torch.long)) polygon_to_polygon_type.append( torch.tensor([_polygon_to_polygon_types.index('RIGHT')], dtype=torch.uint8)) if len(polygon_to_polygon_edge_index) != 0: polygon_to_polygon_edge_index = torch.cat(polygon_to_polygon_edge_index, dim=1) polygon_to_polygon_type = torch.cat(polygon_to_polygon_type, dim=0) else: polygon_to_polygon_edge_index = torch.tensor([[], []], dtype=torch.long) polygon_to_polygon_type = torch.tensor([], dtype=torch.uint8) map_data = { 'map_polygon': {}, 'map_point': {}, ('map_point', 'to', 'map_polygon'): {}, ('map_polygon', 'to', 'map_polygon'): {}, } map_data['map_polygon']['num_nodes'] = num_polygons # int, number of map segments in the scenario map_data['map_polygon']['type'] = polygon_type # (num_polygons,) type of each polygon map_data['map_polygon']['light_type'] = polygon_light_type # (num_polygons,) light type of each polygon, 3 means unknown if len(num_points) == 0: map_data['map_point']['num_nodes'] = 0 map_data['map_point']['position'] = torch.tensor([], dtype=torch.float) map_data['map_point']['orientation'] = torch.tensor([], dtype=torch.float) map_data['map_point']['magnitude'] = torch.tensor([], dtype=torch.float) if dim == 3: map_data['map_point']['height'] = torch.tensor([], dtype=torch.float) map_data['map_point']['type'] = torch.tensor([], dtype=torch.uint8) map_data['map_point']['side'] = torch.tensor([], dtype=torch.uint8) else: map_data['map_point']['num_nodes'] = num_points.sum().item() # int, number of total points of all segments in the scenario map_data['map_point']['position'] = torch.cat(point_position, dim=0) # (num_of_total_points_of_all_segments, 3) map_data['map_point']['orientation'] = torch.cat(point_orientation, dim=0) # (num_of_total_points_of_all_segments,) map_data['map_point']['magnitude'] = torch.cat(point_magnitude, dim=0) # (num_of_total_points_of_all_segments,) if dim == 3: map_data['map_point']['height'] = torch.cat(point_height, dim=0) # (num_of_total_points_of_all_segments,) map_data['map_point']['type'] = torch.cat(point_type, dim=0) # (num_of_total_points_of_all_segments,) type of point => `_point_types` map_data['map_point', 'to', 'map_polygon']['edge_index'] = point_to_polygon_edge_index # (2, num_of_total_points_of_all_segments) map_data['map_polygon', 'to', 'map_polygon']['edge_index'] = polygon_to_polygon_edge_index map_data['map_polygon', 'to', 'map_polygon']['type'] = polygon_to_polygon_type if int(os.getenv('DEBUG_MAP', 1)): import matplotlib.pyplot as plt plt.axis('equal') plt.scatter(map_data['map_point']['position'][:, 0], map_data['map_point']['position'][:, 1], s=0.2, c='black', edgecolors='none') plt.savefig("debug.png", dpi=600) return map_data # def process_agent(track_info, tracks_to_predict, scenario_id, start_timestamp, end_timestamp): # agents_array = track_info["states"].transpose(1, 0, 2) # (num_timesteps, num_agents, 10) e.g. (91, 15, 10) # object_id = np.array(track_info["object_id"]) # (num_agents,) global id of each agent # object_type = track_info["object_type"] # (num_agents,) type of each agent, e.g. 'TYPE_VEHICLE' # id_hash = {object_id[o_idx]: object_type[o_idx] for o_idx in range(len(object_id))} # def type_hash(x): # tp = id_hash[x] # type_re_hash = { # "TYPE_VEHICLE": "vehicle", # "TYPE_PEDESTRIAN": "pedestrian", # "TYPE_CYCLIST": "cyclist", # "TYPE_OTHER": "background", # "TYPE_UNSET": "background" # } # return type_re_hash[tp] # columns = ['observed', 'track_id', 'object_type', 'object_category', 'timestep', # 'position_x', 'position_y', 'position_z', 'length', 'width', 'height', 'heading', 'velocity_x', 'velocity_y', # 'scenario_id', 'start_timestamp', 'end_timestamp', 'num_timestamps', # 'focal_track_id', 'city', 'validity'] # # (num_timesteps, num_agents, 10) e.g. (91, 15, 10) # new_columns = np.ones((agents_array.shape[0], agents_array.shape[1], 11)) # new_columns[:11, :, 0] = True # observed, 10 timesteps # new_columns[11:, :, 0] = False # not observed (current + future) # for index in range(new_columns.shape[0]): # new_columns[index, :, 4] = int(index) # timestep (0 ~ 90) # new_columns[..., 1] = object_id # new_columns[..., 2] = object_id # new_columns[:, tracks_to_predict['track_index'], 3] = 3 # new_columns[..., 5] = 11 # new_columns[..., 6] = int(start_timestamp) # 0 # new_columns[..., 7] = int(end_timestamp) # 91 # new_columns[..., 8] = int(91) # 91 # new_columns[..., 9] = object_id # new_columns[..., 10] = 10086 # new_columns = new_columns # new_agents_array = np.concatenate([new_columns, agents_array], axis=-1) # (num_timesteps, num_agents, 21) e.g. (91, 15, 21) # # filter out the invalid timestep of agents, reshape to (num_valid_of_timesteps_of_all_agents, 21) e.g. (91, 15, 21) -> (1137, 21) # if args.disable_invalid: # new_agents_array = new_agents_array[new_agents_array[..., -1] == 1.0].reshape(-1, new_agents_array.shape[-1]) # else: # agent_valid_mask = new_agents_array[..., -1] # (num_timesteps, num_agents) # agent_mask = np.sum(agent_valid_mask, axis=0) > MIN_VALID_STEPS # NOTE: 10 is a empirical parameter # new_agents_array = new_agents_array[:, agent_mask] # new_agents_array = new_agents_array.reshape(-1, new_agents_array.shape[-1]) # (91, 15, 21) -> (1365, 21) # new_agents_array = new_agents_array[..., [0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 6, 7, 8, 9, 10, 20]] # new_agents_array = pd.DataFrame(data=new_agents_array, columns=columns) # new_agents_array["object_type"] = new_agents_array["object_type"].apply(func=type_hash) # new_agents_array["start_timestamp"] = new_agents_array["start_timestamp"].astype(int) # new_agents_array["end_timestamp"] = new_agents_array["end_timestamp"].astype(int) # new_agents_array["num_timestamps"] = new_agents_array["num_timestamps"].astype(int) # new_agents_array["scenario_id"] = scenario_id # return new_agents_array def process_dynamic_map(dynamic_map_infos): lane_ids = dynamic_map_infos["lane_id"] tf_lights = [] for t in range(len(lane_ids)): lane_id = lane_ids[t] time = np.ones_like(lane_id) * t state = dynamic_map_infos["state"][t] tf_light = np.concatenate([lane_id, time, state], axis=0) tf_lights.append(tf_light) tf_lights = np.concatenate(tf_lights, axis=1).transpose(1, 0) tf_lights = pd.DataFrame(data=tf_lights, columns=["lane_id", "time_step", "state"]) tf_lights["time_step"] = tf_lights["time_step"].astype("str") tf_lights["lane_id"] = tf_lights["lane_id"].astype("str") tf_lights["state"] = tf_lights["state"].astype("str") tf_lights.loc[tf_lights["state"].str.contains("STOP"), ["state"]] = ( "LANE_STATE_STOP" ) tf_lights.loc[tf_lights["state"].str.contains("GO"), ["state"]] = "LANE_STATE_GO" tf_lights.loc[tf_lights["state"].str.contains("CAUTION"), ["state"]] = ( "LANE_STATE_CAUTION" ) tf_lights.loc[tf_lights["state"].str.contains("UNKNOWN"), ["state"]] = ( "LANE_STATE_UNKNOWN" ) return tf_lights polyline_type = { # for lane 'TYPE_UNDEFINED': -1, 'TYPE_FREEWAY': 1, 'TYPE_SURFACE_STREET': 2, 'TYPE_BIKE_LANE': 3, # for roadline 'TYPE_UNKNOWN': -1, 'TYPE_BROKEN_SINGLE_WHITE': 6, 'TYPE_SOLID_SINGLE_WHITE': 7, 'TYPE_SOLID_DOUBLE_WHITE': 8, 'TYPE_BROKEN_SINGLE_YELLOW': 9, 'TYPE_BROKEN_DOUBLE_YELLOW': 10, 'TYPE_SOLID_SINGLE_YELLOW': 11, 'TYPE_SOLID_DOUBLE_YELLOW': 12, 'TYPE_PASSING_DOUBLE_YELLOW': 13, # for roadedge 'TYPE_ROAD_EDGE_BOUNDARY': 15, 'TYPE_ROAD_EDGE_MEDIAN': 16, # for stopsign 'TYPE_STOP_SIGN': 17, # for crosswalk 'TYPE_CROSSWALK': 18, # for speed bump 'TYPE_SPEED_BUMP': 19 } object_type = { 0: 'TYPE_UNSET', 1: 'TYPE_VEHICLE', 2: 'TYPE_PEDESTRIAN', 3: 'TYPE_CYCLIST', 4: 'TYPE_OTHER' } def decode_tracks_from_proto(scenario): sdc_track_index = scenario.sdc_track_index track_index_predict = [i.track_index for i in scenario.tracks_to_predict] object_id_interest = [i for i in scenario.objects_of_interest] track_infos = { 'object_id': [], # {0: unset, 1: vehicle, 2: pedestrian, 3: cyclist, 4: others} 'object_type': [], 'states': [], 'valid': [], 'role': [], } # tracks mean N number of objects, e.g. len(tracks) = 55 # each track has 91 states, e.g. len(tracks[0].states) == 91 # each state has 10 attributes: center_x, center_y, center_z, length, ..., velocity_y, valid for i, cur_data in enumerate(scenario.tracks): step_state = [] step_valid = [] for s in cur_data.states: # n_steps step_state.append( [ s.center_x, s.center_y, s.center_z, s.length, s.width, s.height, s.heading, s.velocity_x, s.velocity_y, ] ) step_valid.append(s.valid) # This angle is normalized to [-pi, pi). The velocity vector in m/s track_infos['object_id'].append(cur_data.id) # id of object in this track track_infos['object_type'].append(cur_data.object_type - 1) track_infos['states'].append(np.array(step_state, dtype=np.float32)) track_infos['valid'].append(np.array(step_valid)) track_infos['role'].append([False, False, False]) if i in track_index_predict: track_infos['role'][-1][2] = True # predict=2 if cur_data.id in object_id_interest: track_infos['role'][-1][1] = True # interest=1 if i == sdc_track_index: track_infos['role'][-1][0] = True # ego_vehicle=0 track_infos['states'] = np.array(track_infos['states'], dtype=np.float32) # (n_agent, n_step, 9) track_infos['valid'] = np.array(track_infos['valid'], dtype=np.bool_) track_infos['role'] = np.array(track_infos['role'], dtype=np.bool_) track_infos['object_id'] = np.array(track_infos['object_id'], dtype=np.int64) track_infos['object_type'] = np.array(track_infos['object_type'], dtype=np.uint8) track_infos['tracks_to_predict'] = np.array(track_index_predict, dtype=np.int64) return track_infos from collections import defaultdict def decode_map_features_from_proto(map_features): map_infos = { 'lane': [], 'road_line': [], 'road_edge': [], 'stop_sign': [], 'crosswalk': [], 'speed_bump': [], 'lane_dict': {}, 'lane2other_dict': {} } polylines = [] point_cnt = 0 lane2other_dict = defaultdict(list) for cur_data in map_features: cur_info = {'id': cur_data.id} if cur_data.lane.ByteSize() > 0: cur_info['speed_limit_mph'] = cur_data.lane.speed_limit_mph cur_info['type'] = cur_data.lane.type + 1 # 0: undefined, 1: freeway, 2: surface_street, 3: bike_lane cur_info['left_neighbors'] = [lane.feature_id for lane in cur_data.lane.left_neighbors] cur_info['right_neighbors'] = [lane.feature_id for lane in cur_data.lane.right_neighbors] cur_info['interpolating'] = cur_data.lane.interpolating cur_info['entry_lanes'] = list(cur_data.lane.entry_lanes) cur_info['exit_lanes'] = list(cur_data.lane.exit_lanes) cur_info['left_boundary_type'] = [x.boundary_type + 5 for x in cur_data.lane.left_boundaries] cur_info['right_boundary_type'] = [x.boundary_type + 5 for x in cur_data.lane.right_boundaries] cur_info['left_boundary'] = [x.boundary_feature_id for x in cur_data.lane.left_boundaries] cur_info['right_boundary'] = [x.boundary_feature_id for x in cur_data.lane.right_boundaries] cur_info['left_boundary_start_index'] = [lane.lane_start_index for lane in cur_data.lane.left_boundaries] cur_info['left_boundary_end_index'] = [lane.lane_end_index for lane in cur_data.lane.left_boundaries] cur_info['right_boundary_start_index'] = [lane.lane_start_index for lane in cur_data.lane.right_boundaries] cur_info['right_boundary_end_index'] = [lane.lane_end_index for lane in cur_data.lane.right_boundaries] lane2other_dict[cur_data.id].extend(cur_info['left_boundary']) lane2other_dict[cur_data.id].extend(cur_info['right_boundary']) global_type = cur_info['type'] cur_polyline = np.stack( [np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in cur_data.lane.polyline], axis=0) cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1) if cur_polyline.shape[0] <= 1: continue map_infos['lane'].append(cur_info) map_infos['lane_dict'][cur_data.id] = cur_info elif cur_data.road_line.ByteSize() > 0: cur_info['type'] = cur_data.road_line.type + 5 global_type = cur_info['type'] cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in cur_data.road_line.polyline], axis=0) cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1) if cur_polyline.shape[0] <= 1: continue map_infos['road_line'].append(cur_info) # (num_points, 5) elif cur_data.road_edge.ByteSize() > 0: cur_info['type'] = cur_data.road_edge.type + 14 global_type = cur_info['type'] cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in cur_data.road_edge.polyline], axis=0) cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1) if cur_polyline.shape[0] <= 1: continue map_infos['road_edge'].append(cur_info) elif cur_data.stop_sign.ByteSize() > 0: cur_info['lane_ids'] = list(cur_data.stop_sign.lane) for i in cur_info['lane_ids']: lane2other_dict[i].append(cur_data.id) point = cur_data.stop_sign.position cur_info['position'] = np.array([point.x, point.y, point.z]) global_type = polyline_type['TYPE_STOP_SIGN'] cur_polyline = np.array([point.x, point.y, point.z, global_type, cur_data.id]).reshape(1, 5) if cur_polyline.shape[0] <= 1: continue map_infos['stop_sign'].append(cur_info) elif cur_data.crosswalk.ByteSize() > 0: global_type = polyline_type['TYPE_CROSSWALK'] cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in cur_data.crosswalk.polygon], axis=0) cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1) if cur_polyline.shape[0] <= 1: continue map_infos['crosswalk'].append(cur_info) elif cur_data.speed_bump.ByteSize() > 0: global_type = polyline_type['TYPE_SPEED_BUMP'] cur_polyline = np.stack([np.array([point.x, point.y, point.z, global_type, cur_data.id]) for point in cur_data.speed_bump.polygon], axis=0) cur_polyline = np.concatenate((cur_polyline[:, 0:3], cur_polyline[:, 3:]), axis=-1) if cur_polyline.shape[0] <= 1: continue map_infos['speed_bump'].append(cur_info) else: continue polylines.append(cur_polyline) cur_info['polyline_index'] = (point_cnt, point_cnt + len(cur_polyline)) # (start index of point in current scenario, end index of point in current scenario) point_cnt += len(cur_polyline) polylines = np.concatenate(polylines, axis=0).astype(np.float32) map_infos['all_polylines'] = polylines # (num_of_total_points_in_current_scenario, 5) map_infos['lane2other_dict'] = lane2other_dict return map_infos def decode_dynamic_map_states_from_proto(dynamic_map_states): signal_state = { 0: 'LANE_STATE_UNKNOWN', # States for traffic signals with arrows. 1: 'LANE_STATE_ARROW_STOP', 2: 'LANE_STATE_ARROW_CAUTION', 3: 'LANE_STATE_ARROW_GO', # Standard round traffic signals. 4: 'LANE_STATE_STOP', 5: 'LANE_STATE_CAUTION', 6: 'LANE_STATE_GO', # Flashing light signals. 7: 'LANE_STATE_FLASHING_STOP', 8: 'LANE_STATE_FLASHING_CAUTION' } dynamic_map_infos = { 'lane_id': [], 'state': [], 'stop_point': [] } for cur_data in dynamic_map_states: # len(dynamic_map_states) = num_timestamp lane_id, state, stop_point = [], [], [] for cur_signal in cur_data.lane_states: # (num_observed_signals) lane_id.append(cur_signal.lane) state.append(signal_state[cur_signal.state]) stop_point.append([cur_signal.stop_point.x, cur_signal.stop_point.y, cur_signal.stop_point.z]) dynamic_map_infos['lane_id'].append(np.array([lane_id])) dynamic_map_infos['state'].append(np.array([state])) dynamic_map_infos['stop_point'].append(np.array([stop_point])) return dynamic_map_infos # def process_single_data(scenario): # info = {} # info['scenario_id'] = scenario.scenario_id # info['timestamps_seconds'] = list(scenario.timestamps_seconds) # list of int of shape (91) # info['current_time_index'] = scenario.current_time_index # int, 10 # info['sdc_track_index'] = scenario.sdc_track_index # int # info['objects_of_interest'] = list(scenario.objects_of_interest) # list, could be empty list # info['tracks_to_predict'] = { # 'track_index': [cur_pred.track_index for cur_pred in scenario.tracks_to_predict], # 'difficulty': [cur_pred.difficulty for cur_pred in scenario.tracks_to_predict] # } # for training: suggestion of objects to train on, for val/test: need to be predicted # # decode tracks data # track_infos = decode_tracks_from_proto(scenario.tracks) # info['tracks_to_predict']['object_type'] = [track_infos['object_type'][cur_idx] for cur_idx in # info['tracks_to_predict']['track_index']] # # decode map related data # map_infos = decode_map_features_from_proto(scenario.map_features) # dynamic_map_infos = decode_dynamic_map_states_from_proto(scenario.dynamic_map_states) # save_infos = { # 'track_infos': track_infos, # 'map_infos': map_infos, # 'dynamic_map_infos': dynamic_map_infos, # } # save_infos.update(info) # return save_infos def wm2argo(file, input_dir, output_dir, existing_files=[], output_dir_tfrecords_splitted=None): file_path = os.path.join(input_dir, file) dataset = tf.data.TFRecordDataset(file_path, compression_type='', num_parallel_reads=3) for cnt, tf_data in tqdm(enumerate(dataset), leave=False, desc=f'Process {file}...'): scenario = scenario_pb2.Scenario() scenario.ParseFromString(bytearray(tf_data.numpy())) scenario_id = scenario.scenario_id tqdm.write(f"idx: {cnt}, scenario_id: {scenario_id} of {file}") if f'{scenario_id}.pkl' not in existing_files: map_infos = decode_map_features_from_proto(scenario.map_features) track_infos = decode_tracks_from_proto(scenario) dynamic_map_infos = decode_dynamic_map_states_from_proto(scenario.dynamic_map_states) sdc_track_index = scenario.sdc_track_index # int av_id = track_infos['object_id'][sdc_track_index] # if len(track_infos['tracks_to_predict']) < 1: # return current_time_index = scenario.current_time_index tf_lights = process_dynamic_map(dynamic_map_infos) tf_current_light = tf_lights.loc[tf_lights["time_step"] == current_time_index] # 10 (history) + 1 (current) + 80 (future) map_data = get_map_features(map_infos, tf_current_light) # new_agents_array = process_agent(track_infos, tracks_to_predict, scenario_id, 0, 91) # mtr2argo data = dict() data.update(map_data) data['scenario_id'] = scenario_id data['agent'] = get_agent_features(track_infos, av_id, num_historical_steps=current_time_index + 1, num_steps=91) with open(os.path.join(output_dir, f'{scenario_id}.pkl'), "wb+") as f: pickle.dump(data, f) if output_dir_tfrecords_splitted is not None: tf_file = os.path.join(output_dir_tfrecords_splitted, f'{scenario_id}.tfrecords') if not os.path.exists(tf_file): with tf.io.TFRecordWriter(tf_file) as file_writer: file_writer.write(tf_data.numpy()) def batch_process9s_transformer(input_dir, output_dir, split, num_workers=2): signal.signal(signal.SIGINT, signal.SIG_IGN) output_dir_tfrecords_splitted = None if split == "validation": output_dir_tfrecords_splitted = os.path.join(output_dir, 'validation_tfrecords_splitted') os.makedirs(output_dir_tfrecords_splitted, exist_ok=True) input_dir = os.path.join(input_dir, split) output_dir = os.path.join(output_dir, split) os.makedirs(output_dir, exist_ok=True) packages = sorted(os.listdir(input_dir)) existing_files = sorted(os.listdir(output_dir)) func = partial( wm2argo, output_dir=output_dir, input_dir=input_dir, existing_files=existing_files, output_dir_tfrecords_splitted=output_dir_tfrecords_splitted ) try: with multiprocessing.Pool(num_workers, maxtasksperchild=10) as p: r = list(tqdm(p.imap_unordered(func, packages), total=len(packages))) except KeyboardInterrupt: p.terminate() p.join() def generate_meta_infos(data_dir): import json meta_infos = dict() for split in tqdm(['training', 'validation', 'test'], leave=False): if not os.path.exists(os.path.join(data_dir, split)): continue split_infos = dict() files = os.listdir(os.path.join(data_dir, split)) for file in tqdm(files, leave=False): try: data = pickle.load(open(os.path.join(data_dir, split, file), 'rb')) except Exception as e: tqdm.write(f'Failed to load scenario {file} due to {e}') continue scenario_infos = dict(num_agents=data['agent']['num_nodes']) scenario_id = data['scenario_id'] split_infos[scenario_id] = scenario_infos meta_infos[split] = split_infos with open(os.path.join(data_dir, 'meta_infos.json'), 'w', encoding='utf-8') as f: json.dump(meta_infos, f, indent=4) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('--input_dir', type=str, default='data/waymo/') parser.add_argument('--output_dir', type=str, default='data/waymo_processed/') parser.add_argument('--split', type=str, default='validation') parser.add_argument('--no_batch', action='store_true') parser.add_argument('--disable_invalid', action="store_true") parser.add_argument('--generate_meta_infos', action="store_true") args = parser.parse_args() if args.generate_meta_infos: generate_meta_infos(args.output_dir) elif args.no_batch: output_dir_tfrecords_splitted = None if args.split == "validation": output_dir_tfrecords_splitted = os.path.join(args.output_dir, 'validation_tfrecords_splitted') os.makedirs(output_dir_tfrecords_splitted, exist_ok=True) input_dir = os.path.join(args.input_dir, args.split) output_dir = os.path.join(args.output_dir, args.split) os.makedirs(output_dir, exist_ok=True) files = sorted(os.listdir(input_dir)) os.makedirs(args.output_dir, exist_ok=True) for file in tqdm(files, leave=False, desc=f'Process {args.split}...'): wm2argo(file, input_dir, output_dir, output_dir_tfrecords_splitted) else: batch_process9s_transformer(args.input_dir, args.output_dir, args.split, num_workers=96)