import logging import time import os import yaml import easydict import math import torch import torch.nn as nn from rich.console import Console from typing import Any, List, Optional, Mapping from lightning_utilities.core.rank_zero import rank_prefixed_message, rank_zero_only CONSOLE = Console(width=128) def check_nan_inf(t, s): assert not torch.isinf(t).any(), f"{s} is inf, {t}" assert not torch.isnan(t).any(), f"{s} is nan, {t}" def safe_list_index(ls: List[Any], elem: Any) -> Optional[int]: try: return ls.index(elem) except ValueError: return None def angle_between_2d_vectors( ctr_vector: torch.Tensor, nbr_vector: torch.Tensor) -> torch.Tensor: return torch.atan2(ctr_vector[..., 0] * nbr_vector[..., 1] - ctr_vector[..., 1] * nbr_vector[..., 0], (ctr_vector[..., :2] * nbr_vector[..., :2]).sum(dim=-1)) def angle_between_3d_vectors( ctr_vector: torch.Tensor, nbr_vector: torch.Tensor) -> torch.Tensor: return torch.atan2(torch.cross(ctr_vector, nbr_vector, dim=-1).norm(p=2, dim=-1), (ctr_vector * nbr_vector).sum(dim=-1)) def side_to_directed_lineseg( query_point: torch.Tensor, start_point: torch.Tensor, end_point: torch.Tensor) -> str: cond = ((end_point[0] - start_point[0]) * (query_point[1] - start_point[1]) - (end_point[1] - start_point[1]) * (query_point[0] - start_point[0])) if cond > 0: return 'LEFT' elif cond < 0: return 'RIGHT' else: return 'CENTER' def wrap_angle( angle: torch.Tensor, min_val: float = -math.pi, max_val: float = math.pi) -> torch.Tensor: return min_val + (angle + max_val) % (max_val - min_val) def load_config_act(path): """ load config file""" with open(path, 'r') as f: cfg = yaml.load(f, Loader=yaml.FullLoader) return easydict.EasyDict(cfg) def load_config_init(path): """ load config file""" path = os.path.join('init/configs', f'{path}.yaml') with open(path, 'r') as f: cfg = yaml.load(f, Loader=yaml.FullLoader) return cfg class Logging: def make_log_dir(self, dirname='logs'): now_dir = os.path.dirname(__file__) path = os.path.join(now_dir, dirname) path = os.path.normpath(path) if not os.path.exists(path): os.mkdir(path) return path def get_log_filename(self): filename = "{}.log".format(time.strftime("%Y-%m-%d-%H%M%S", time.localtime())) filename = os.path.join(self.make_log_dir(), filename) filename = os.path.normpath(filename) return filename def log(self, level='DEBUG', name="simagent"): logger = logging.getLogger(name) level = getattr(logging, level) logger.setLevel(level) if not logger.handlers: sh = logging.StreamHandler() fh = logging.FileHandler(filename=self.get_log_filename(), mode='a',encoding="utf-8") fmt = logging.Formatter("%(asctime)s-%(levelname)s-%(filename)s-Line:%(lineno)d-Message:%(message)s") sh.setFormatter(fmt=fmt) fh.setFormatter(fmt=fmt) logger.addHandler(sh) logger.addHandler(fh) return logger def add_log(self, logger, level='DEBUG'): level = getattr(logging, level) logger.setLevel(level) if not logger.handlers: sh = logging.StreamHandler() fh = logging.FileHandler(filename=self.get_log_filename(), mode='a',encoding="utf-8") fmt = logging.Formatter("%(asctime)s-%(levelname)s-%(filename)s-Line:%(lineno)d-Message:%(message)s") sh.setFormatter(fmt=fmt) fh.setFormatter(fmt=fmt) logger.addHandler(sh) logger.addHandler(fh) return logger # Adapted from 'CatK' class RankedLogger(logging.LoggerAdapter): """A multi-GPU-friendly python command line logger.""" def __init__( self, name: str = __name__, rank_zero_only: bool = False, extra: Optional[Mapping[str, object]] = None, ) -> None: """Initializes a multi-GPU-friendly python command line logger that logs on all processes with their rank prefixed in the log message. :param name: The name of the logger. Default is ``__name__``. :param rank_zero_only: Whether to force all logs to only occur on the rank zero process. Default is `False`. :param extra: (Optional) A dict-like object which provides contextual information. See `logging.LoggerAdapter`. """ logger = logging.getLogger(name) super().__init__(logger=logger, extra=extra) self.rank_zero_only = rank_zero_only def log( self, level: int, msg: str, rank: Optional[int] = None, *args, **kwargs ) -> None: """Delegate a log call to the underlying logger, after prefixing its message with the rank of the process it's being logged from. If `'rank'` is provided, then the log will only occur on that rank/process. :param level: The level to log at. Look at `logging.__init__.py` for more information. :param msg: The message to log. :param rank: The rank to log at. :param args: Additional args to pass to the underlying logging function. :param kwargs: Any additional keyword args to pass to the underlying logging function. """ if self.isEnabledFor(level): msg, kwargs = self.process(msg, kwargs) current_rank = getattr(rank_zero_only, "rank", None) if current_rank is None: raise RuntimeError( "The `rank_zero_only.rank` needs to be set before use" ) msg = rank_prefixed_message(msg, current_rank) if self.rank_zero_only: if current_rank == 0: self.logger.log(level, msg, *args, **kwargs) else: if rank is None: self.logger.log(level, msg, *args, **kwargs) elif current_rank == rank: self.logger.log(level, msg, *args, **kwargs) def weight_init(m: nn.Module) -> None: if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): fan_in = m.in_channels / m.groups fan_out = m.out_channels / m.groups bound = (6.0 / (fan_in + fan_out)) ** 0.5 nn.init.uniform_(m.weight, -bound, bound) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.Embedding): nn.init.normal_(m.weight, mean=0.0, std=0.02) elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.MultiheadAttention): if m.in_proj_weight is not None: fan_in = m.embed_dim fan_out = m.embed_dim bound = (6.0 / (fan_in + fan_out)) ** 0.5 nn.init.uniform_(m.in_proj_weight, -bound, bound) else: nn.init.xavier_uniform_(m.q_proj_weight) nn.init.xavier_uniform_(m.k_proj_weight) nn.init.xavier_uniform_(m.v_proj_weight) if m.in_proj_bias is not None: nn.init.zeros_(m.in_proj_bias) nn.init.xavier_uniform_(m.out_proj.weight) if m.out_proj.bias is not None: nn.init.zeros_(m.out_proj.bias) if m.bias_k is not None: nn.init.normal_(m.bias_k, mean=0.0, std=0.02) if m.bias_v is not None: nn.init.normal_(m.bias_v, mean=0.0, std=0.02) elif isinstance(m, (nn.LSTM, nn.LSTMCell)): for name, param in m.named_parameters(): if 'weight_ih' in name: for ih in param.chunk(4, 0): nn.init.xavier_uniform_(ih) elif 'weight_hh' in name: for hh in param.chunk(4, 0): nn.init.orthogonal_(hh) elif 'weight_hr' in name: nn.init.xavier_uniform_(param) elif 'bias_ih' in name: nn.init.zeros_(param) elif 'bias_hh' in name: nn.init.zeros_(param) nn.init.ones_(param.chunk(4, 0)[1]) elif isinstance(m, (nn.GRU, nn.GRUCell)): for name, param in m.named_parameters(): if 'weight_ih' in name: for ih in param.chunk(3, 0): nn.init.xavier_uniform_(ih) elif 'weight_hh' in name: for hh in param.chunk(3, 0): nn.init.orthogonal_(hh) elif 'bias_ih' in name: nn.init.zeros_(param) elif 'bias_hh' in name: nn.init.zeros_(param) def pos2posemb(pos, num_pos_feats=128, temperature=10000): scale = 2 * math.pi pos = pos * scale dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) D = pos.shape[-1] pos_dims = [] for i in range(D): pos_dim_i = pos[..., i, None] / dim_t pos_dim_i = torch.stack((pos_dim_i[..., 0::2].sin(), pos_dim_i[..., 1::2].cos()), dim=-1).flatten(-2) pos_dims.append(pos_dim_i) posemb = torch.cat(pos_dims, dim=-1) return posemb