File size: 13,637 Bytes
c1a7f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Optional, Tuple, Union
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import softmax

from dev.utils.func import weight_init


__all__ = ['AttentionLayer', 'FourierEmbedding', 'MLPEmbedding', 'MLPLayer', 'MappingNetwork']


class AttentionLayer(MessagePassing):

    def __init__(self,
                 hidden_dim: int,
                 num_heads: int,
                 head_dim: int,
                 dropout: float,
                 bipartite: bool,
                 has_pos_emb: bool,
                 **kwargs) -> None:
        super(AttentionLayer, self).__init__(aggr='add', node_dim=0, **kwargs)
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.has_pos_emb = has_pos_emb
        self.scale = head_dim ** -0.5

        self.to_q = nn.Linear(hidden_dim, head_dim * num_heads)
        self.to_k = nn.Linear(hidden_dim, head_dim * num_heads, bias=False)
        self.to_v = nn.Linear(hidden_dim, head_dim * num_heads)
        if has_pos_emb:
            self.to_k_r = nn.Linear(hidden_dim, head_dim * num_heads, bias=False)
            self.to_v_r = nn.Linear(hidden_dim, head_dim * num_heads)
        self.to_s = nn.Linear(hidden_dim, head_dim * num_heads)
        self.to_g = nn.Linear(head_dim * num_heads + hidden_dim, head_dim * num_heads)
        self.to_out = nn.Linear(head_dim * num_heads, hidden_dim)
        self.attn_drop = nn.Dropout(dropout)
        self.ff_mlp = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim * 4),
            nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim * 4, hidden_dim),
        )
        if bipartite:
            self.attn_prenorm_x_src = nn.LayerNorm(hidden_dim)
            self.attn_prenorm_x_dst = nn.LayerNorm(hidden_dim)
        else:
            self.attn_prenorm_x_src = nn.LayerNorm(hidden_dim)
            self.attn_prenorm_x_dst = self.attn_prenorm_x_src
        if has_pos_emb:
            self.attn_prenorm_r = nn.LayerNorm(hidden_dim)
        self.attn_postnorm = nn.LayerNorm(hidden_dim)
        self.ff_prenorm = nn.LayerNorm(hidden_dim)
        self.ff_postnorm = nn.LayerNorm(hidden_dim)
        self.apply(weight_init)

    def forward(self,
                x: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
                r: Optional[torch.Tensor],
                edge_index: torch.Tensor) -> torch.Tensor:
        if isinstance(x, torch.Tensor):
            x_src = x_dst = self.attn_prenorm_x_src(x)
        else:
            x_src, x_dst = x
            x_src = self.attn_prenorm_x_src(x_src)
            x_dst = self.attn_prenorm_x_dst(x_dst)
            x = x[1]
        if self.has_pos_emb and r is not None:
            r = self.attn_prenorm_r(r)
        x = x + self.attn_postnorm(self._attn_block(x_src, x_dst, r, edge_index))
        x = x + self.ff_postnorm(self._ff_block(self.ff_prenorm(x)))
        return x

    def message(self,
                q_i: torch.Tensor,
                k_j: torch.Tensor,
                v_j: torch.Tensor,
                r: Optional[torch.Tensor],
                index: torch.Tensor,
                ptr: Optional[torch.Tensor]) -> torch.Tensor:
        if self.has_pos_emb and r is not None:
            k_j = k_j + self.to_k_r(r).view(-1, self.num_heads, self.head_dim)
            v_j = v_j + self.to_v_r(r).view(-1, self.num_heads, self.head_dim)
        sim = (q_i * k_j).sum(dim=-1) * self.scale
        attn = softmax(sim, index, ptr)
        self.attention_weight = attn.sum(-1).detach()
        attn = self.attn_drop(attn)
        return v_j * attn.unsqueeze(-1)

    def update(self,
               inputs: torch.Tensor,
               x_dst: torch.Tensor) -> torch.Tensor:
        inputs = inputs.view(-1, self.num_heads * self.head_dim)
        g = torch.sigmoid(self.to_g(torch.cat([inputs, x_dst], dim=-1)))
        return inputs + g * (self.to_s(x_dst) - inputs)

    def _attn_block(self,
                    x_src: torch.Tensor,
                    x_dst: torch.Tensor,
                    r: Optional[torch.Tensor],
                    edge_index: torch.Tensor) -> torch.Tensor:
        q = self.to_q(x_dst).view(-1, self.num_heads, self.head_dim)
        k = self.to_k(x_src).view(-1, self.num_heads, self.head_dim)
        v = self.to_v(x_src).view(-1, self.num_heads, self.head_dim)
        agg = self.propagate(edge_index=edge_index, x_dst=x_dst, q=q, k=k, v=v, r=r)
        return self.to_out(agg)

    def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
        return self.ff_mlp(x)


class FourierEmbedding(nn.Module):

    def __init__(self,
                 input_dim: int,
                 hidden_dim: int,
                 num_freq_bands: int) -> None:
        super(FourierEmbedding, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim

        self.freqs = nn.Embedding(input_dim, num_freq_bands) if input_dim != 0 else None
        self.mlps = nn.ModuleList(
            [nn.Sequential(
                nn.Linear(num_freq_bands * 2 + 1, hidden_dim),
                nn.LayerNorm(hidden_dim),
                nn.ReLU(inplace=True),
                nn.Linear(hidden_dim, hidden_dim),
            )
                for _ in range(input_dim)])
        self.to_out = nn.Sequential(
            nn.LayerNorm(hidden_dim),
            nn.ReLU(inplace=True),
            nn.Linear(hidden_dim, hidden_dim),
        )
        self.apply(weight_init)

    def forward(self,
                continuous_inputs: Optional[torch.Tensor] = None,
                categorical_embs: Optional[List[torch.Tensor]] = None) -> torch.Tensor:
        if continuous_inputs is None:
            if categorical_embs is not None:
                x = torch.stack(categorical_embs).sum(dim=0)
            else:
                raise ValueError('Both continuous_inputs and categorical_embs are None')
        else:
            x = continuous_inputs.unsqueeze(-1) * self.freqs.weight * 2 * math.pi
            # Warning: if your data are noisy, don't use learnable sinusoidal embedding
            x = torch.cat([x.cos(), x.sin(), continuous_inputs.unsqueeze(-1)], dim=-1)
            continuous_embs: List[Optional[torch.Tensor]] = [None] * self.input_dim
            for i in range(self.input_dim):
                continuous_embs[i] = self.mlps[i](x[:, i])
            x = torch.stack(continuous_embs).sum(dim=0)
            if categorical_embs is not None:
                x = x + torch.stack(categorical_embs).sum(dim=0)
        return self.to_out(x)


class MLPEmbedding(nn.Module):
    def __init__(self,
                 input_dim: int,
                 hidden_dim: int) -> None:
        super(MLPEmbedding, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.mlp = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.LayerNorm(128),
            nn.ReLU(inplace=True),
            nn.Linear(128, hidden_dim),
            nn.LayerNorm(hidden_dim),
            nn.ReLU(inplace=True),
            nn.Linear(hidden_dim, hidden_dim))
        self.apply(weight_init)

    def forward(self,
                continuous_inputs: Optional[torch.Tensor] = None,
                categorical_embs: Optional[List[torch.Tensor]] = None) -> torch.Tensor:
        if continuous_inputs is None:
            if categorical_embs is not None:
                x = torch.stack(categorical_embs).sum(dim=0)
            else:
                raise ValueError('Both continuous_inputs and categorical_embs are None')
        else:
            x = self.mlp(continuous_inputs)
            if categorical_embs is not None:
                x = x + torch.stack(categorical_embs).sum(dim=0)
        return x


class MLPLayer(nn.Module):

    def __init__(self,
                 input_dim: int,
                 hidden_dim: int=None,
                 output_dim: int=None) -> None:
        super(MLPLayer, self).__init__()

        if hidden_dim is None:
            hidden_dim = output_dim

        self.mlp = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.LayerNorm(hidden_dim),
            nn.ReLU(inplace=True),
            nn.Linear(hidden_dim, output_dim),
        )
        self.apply(weight_init)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.mlp(x)


class MappingNetwork(nn.Module):
    def __init__(self, z_dim, w_dim, layer_dim=None, num_layers=8):
        super().__init__()

        if not layer_dim:
            layer_dim = w_dim
        layer_dims = [z_dim] + [layer_dim] * (num_layers - 1) + [w_dim]

        layers = []
        for i in range(num_layers):
            layers.extend([
                nn.Linear(layer_dims[i], layer_dims[i + 1]),
                nn.LeakyReLU(),
            ])
        self.layers = nn.Sequential(*layers)
    
    def forward(self, z):
        w = self.layers(z)
        return w


# class FocalLoss:
#     def __init__(self, alpha: float=.25, gamma: float=2):
#         self.alpha = alpha
#         self.gamma = gamma

#     def __call__(self, inputs, targets):
#         prob = inputs.sigmoid()
#         ce_loss = F.binary_cross_entropy_with_logits(inputs, targets.float(), reduction='none')
#         p_t = prob * targets + (1 - prob) * (1 - targets)
#         loss = ce_loss * ((1 - p_t) ** self.gamma)

#         if self.alpha >= 0:
#             alpha_t = self.alpha * targets + (1 - self.alpha) * (1 - targets)
#             loss = alpha_t * loss

#         return loss.mean()


class FocalLoss(nn.Module):
    """Focal Loss, as described in https://arxiv.org/abs/1708.02002.
    It is essentially an enhancement to cross entropy loss and is
    useful for classification tasks when there is a large class imbalance.
    x is expected to contain raw, unnormalized scores for each class.
    y is expected to contain class labels.
    Shape:
        - x: (batch_size, C) or (batch_size, C, d1, d2, ..., dK), K > 0.
        - y: (batch_size,) or (batch_size, d1, d2, ..., dK), K > 0.
    """

    def __init__(
        self,
        alpha: Optional[torch.Tensor] = None,
        gamma: float = 0.0,
        reduction: str = "mean",
        ignore_index: int = -100,
    ):
        """Constructor.
        Args:
            alpha (Tensor, optional): Weights for each class. Defaults to None.
            gamma (float, optional): A constant, as described in the paper.
                Defaults to 0.
            reduction (str, optional): 'mean', 'sum' or 'none'.
                Defaults to 'mean'.
            ignore_index (int, optional): class label to ignore.
                Defaults to -100.
        """
        if reduction not in ("mean", "sum", "none"):
            raise ValueError('Reduction must be one of: "mean", "sum", "none".')

        super().__init__()
        self.alpha = alpha
        self.gamma = gamma
        self.ignore_index = ignore_index
        self.reduction = reduction

        self.nll_loss = nn.NLLLoss(
            weight=alpha, reduction="none", ignore_index=ignore_index
        )

    def __repr__(self):
        arg_keys = ["alpha", "gamma", "ignore_index", "reduction"]
        arg_vals = [self.__dict__[k] for k in arg_keys]
        arg_strs = [f"{k}={v}" for k, v in zip(arg_keys, arg_vals)]
        arg_str = ", ".join(arg_strs)
        return f"{type(self).__name__}({arg_str})"

    def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        if x.ndim > 2:
            # (N, C, d1, d2, ..., dK) --> (N * d1 * ... * dK, C)
            c = x.shape[1]
            x = x.permute(0, *range(2, x.ndim), 1).reshape(-1, c)
            # (N, d1, d2, ..., dK) --> (N * d1 * ... * dK,)
            y = y.view(-1)

        unignored_mask = y != self.ignore_index
        y = y[unignored_mask]
        if len(y) == 0:
            return 0.0
        x = x[unignored_mask]

        # compute weighted cross entropy term: -alpha * log(pt)
        # (alpha is already part of self.nll_loss)
        log_p = F.log_softmax(x, dim=-1)
        ce = self.nll_loss(log_p, y)

        # get true class column from each row
        all_rows = torch.arange(len(x))
        log_pt = log_p[all_rows, y]

        # compute focal term: (1 - pt)^gamma
        pt = log_pt.exp()
        focal_term = (1 - pt) ** self.gamma

        # the full loss: -alpha * ((1 - pt)^gamma) * log(pt)
        loss = focal_term * ce

        if self.reduction == "mean":
            loss = loss.mean()
        elif self.reduction == "sum":
            loss = loss.sum()

        return loss


class OccLoss(nn.Module):

    # geo_scal_loss
    def __init__(self):
        super().__init__()

    def forward(self, pred, target, mask=None):

        nonempty_probs = torch.sigmoid(pred)
        empty_probs = 1 - nonempty_probs

        if mask is None:
            mask = torch.ones_like(target).bool()

        nonempty_target = target == 1
        nonempty_target = nonempty_target[mask].float()
        nonempty_probs = nonempty_probs[mask]
        empty_probs = empty_probs[mask]

        intersection = (nonempty_target * nonempty_probs).sum()
        precision = intersection / nonempty_probs.sum()
        recall = intersection / nonempty_target.sum()
        spec = ((1 - nonempty_target) * (empty_probs)).sum() / (1 - nonempty_target).sum()

        return (
            F.binary_cross_entropy(precision, torch.ones_like(precision))
            + F.binary_cross_entropy(recall, torch.ones_like(recall))
            + F.binary_cross_entropy(spec, torch.ones_like(spec))
        )