ppo-LunarLander-v2 / config.json
greenwinter626's picture
Upload PPO LunarLander-v2 trained agent
987dda5 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79cd3a63f6a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79cd3a63f740>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79cd3a63f7e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79cd3a63f880>", "_build": "<function ActorCriticPolicy._build at 0x79cd3a63f920>", "forward": "<function ActorCriticPolicy.forward at 0x79cd3a63f9c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79cd3a63fa60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79cd3a63fb00>", "_predict": "<function ActorCriticPolicy._predict at 0x79cd3a63fba0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79cd3a63fc40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79cd3a63fce0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79cd3a63fd80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79cd3a786580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739262727945171450, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2cRjwUVJK6QG8fOkDEEDXGQM05SdA4uQAAgD8AAIA/zR4dvHsqi7oqI7e6c66stbJacbmg9NQ5AACAPwAAgD9m1f28CIiEvOrEa726LgG82PsNPf7usT0AAIA/AACAP02nL73DiV26PlKRO9yTXTjN9Dy7ImQPuQAAgD8AAIA/mtWyO1JA97kO/aW6kRe4NGFpPDt/DcM5AACAPwAAgD/N5KO9wx0Sutjt+Lk/BYO2VVHyOsK6FDkAAAAAAACAP81s4zopABe6vuwEOYYX6jOMv1q6OM0euAAAgD8AAIA/ZpH6vBo6OD7m7by9UisovnNtkL0XqQm8AAAAAAAAAACAWka9iomyP/atar6XZpG+rhqYvS62JzwAAAAAAAAAAOZRaD2uDaC6TxmmORchDbZzK4U6os68uAAAgD8AAIA/mt0cvBRokLqangi8HwM0tgNAWTp7raI1AACAPwAAgD9NdwO9SAGVuiqJGrjccQ2z4Fkgu3zhMjcAAIA/AACAP80UCjvhvLK6R5qlOqvLCjYfUAO5CWa9uQAAgD8AAIA/M7jBvEhljrr7pUk7k/0WOMXiErseS/65AACAPwAAgD9ABdQ9MjWLP5iCdj40CrK+rq8XPrpj4bwAAAAAAAAAAJrMLz4cKIQ+GpA9vnR8Lb48Mke8wqhePAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMkyk0rK/6MAWyUTegDjAF0lEdAkp20pd8iOnV9lChoBkdAY8LqM3qA0GgHTegDaAhHQJKi7AnDziF1fZQoaAZHQGWym5lOGj9oB03oA2gIR0CSr7sg+yJLdX2UKGgGR0BhMgsf7rLRaAdN6ANoCEdAkrGgX2ugYnV9lChoBkdAZwa1fE4vOGgHTegDaAhHQJK02sCDEm91fZQoaAZHQF62HAAQxvhoB03oA2gIR0CSuCIKMNtqdX2UKGgGR0BhaQ7eVLSNaAdN6ANoCEdAkrv4T9KmK3V9lChoBkdAYsSj+JgssmgHTegDaAhHQJLAm/KyOaR1fZQoaAZHQGRO/RmbsnloB03oA2gIR0CSwWyRB/qgdX2UKGgGR0BibHoNd7fIaAdN6ANoCEdAksHO6RQrMHV9lChoBkdAYM8YyfthNWgHTegDaAhHQJLB+GsV+JB1fZQoaAZHQGXNXjlxOtZoB03oA2gIR0CSwpDdP+GXdX2UKGgGR0Bhqgh4dIXkaAdN6ANoCEdAksUAUQCjlHV9lChoBkdAZhcVX3g1nGgHTegDaAhHQJLMPTBqKxd1fZQoaAZHQGN/qHoHLRtoB03oA2gIR0CS7L4m1IAfdX2UKGgGR0BjfS0tyxRmaAdN6ANoCEdAku3LD2rXDnV9lChoBkdAXvOeUY8+zWgHTegDaAhHQJLuTsiSq2l1fZQoaAZHQGI8hEa2nbZoB03oA2gIR0CS8+dJ8OTadX2UKGgGR0BgU1QGfPHDaAdN6ANoCEdAkwDE+X7cf3V9lChoBkdAXVMzCUHIIWgHTegDaAhHQJMCvoKUmlZ1fZQoaAZHQFuc6QeV9ndoB03oA2gIR0CTBhfNiYsvdX2UKGgGR0Bl4mMCLdeqaAdN6ANoCEdAkwikKNQ0oHV9lChoBkdAZBNKVY6nzmgHTegDaAhHQJMLT9BKL891fZQoaAZHQGTNuhsZYPpoB03oA2gIR0CTDu8Ti83/dX2UKGgGR0BjRaPuG9HuaAdN6ANoCEdAkw+rU9ZA6nV9lChoBkdAYu97k4m1IGgHTegDaAhHQJMQAZUDMeR1fZQoaAZHQGSZ16/qPfdoB03oA2gIR0CTEDDklu3udX2UKGgGR0Bd7M89wFTvaAdN6ANoCEdAkxC0KiO/+XV9lChoBkdAYYh7AtWdVmgHTegDaAhHQJMS2c6Nly11fZQoaAZHQGC57mdRR/FoB03oA2gIR0CTGgpLEk0KdX2UKGgGR0Bjxz1K5CnhaAdN6ANoCEdAkzkZv1lGw3V9lChoBkdAZ26SgXdj5WgHTegDaAhHQJM54xEfDDV1fZQoaAZHQGIR2KMvRJFoB03oA2gIR0CTOj51/2CedX2UKGgGR0BmLIuwosqbaAdN6ANoCEdAkz8+XiR4hXV9lChoBkdAY+TmkFfReGgHTegDaAhHQJNNQC4jKPp1fZQoaAZHQGETyv9tMwloB03oA2gIR0CTT/mwqy4XdX2UKGgGR0BgoE1dgOSXaAdN6ANoCEdAk1NQHZ9NOHV9lChoBkdAY7Px3FDOT2gHTegDaAhHQJNVyQtBfKJ1fZQoaAZHQGFq1gH/tIFoB03oA2gIR0CTWG1D0DlpdX2UKGgGR0BkZP8MuvlmaAdN6ANoCEdAk1vd6kZaV3V9lChoBkdAYillAeJYT2gHTegDaAhHQJNckT9KmKt1fZQoaAZHQGF2rE1l5GBoB03oA2gIR0CTXObJwKjSdX2UKGgGR0BiPhS1maphaAdN6ANoCEdAk10MkMTewnV9lChoBkdAYkPQYUFjeGgHTegDaAhHQJNdnBvaURp1fZQoaAZHQGPz0ZFXq7loB03oA2gIR0CTYBvKlpGndX2UKGgGR0BjbdlqagEmaAdN6ANoCEdAk2bUO3DvVnV9lChoBkdAZITbzK9wm2gHTegDaAhHQJOGaA2AG0N1fZQoaAZHQGWP4L1EmY1oB03oA2gIR0CThxpPhybQdX2UKGgGR0BonpRO1v2oaAdN6ANoCEdAk4dwyhzvJHV9lChoBkdAZS2l1r6+FmgHTegDaAhHQJOMTKp1ifB1fZQoaAZHQGJGTWGyon9oB03oA2gIR0CTmKIuGsV+dX2UKGgGR0ByKPbypaRqaAdN8wJoCEdAk5mysr/bTXV9lChoBkdAaQeEnssxwmgHTegDaAhHQJOacggX/HZ1fZQoaAZHQGTlxLbpNbloB03oA2gIR0CTnYoFFDv3dX2UKGgGR0Bh73H5rP+oaAdN6ANoCEdAk5/0PYnOSnV9lChoBkdAYKzZmI0qIGgHTegDaAhHQJOieDtgKF91fZQoaAZHQGRTySvC/GloB03oA2gIR0CTpeIToMa1dX2UKGgGR0Bll/LHMlkZaAdN6ANoCEdAk6cCnxaxHHV9lChoBkdAXDDtlZowmGgHTegDaAhHQJOnK0Xxe9l1fZQoaAZHQGSxIvalDWtoB03oA2gIR0CTp73Tuv2XdX2UKGgGR0BxOFU6xPfsaAdNWQJoCEdAk6iGkWRA8nV9lChoBkdAYklX05EMLGgHTegDaAhHQJOq4EEC/491fZQoaAZHQGCoJV81Gb1oB03oA2gIR0CTsusC1Z1WdX2UKGgGR0BDjKWC2+fzaAdL8mgIR0CTs6xHoX9BdX2UKGgGR0BQ67iIcinpaAdL+mgIR0CTtS1YQrc1dX2UKGgGR0BhfhgiNbTuaAdN6ANoCEdAk89nPVurInV9lChoBkdAY6Qi8nNPg2gHTegDaAhHQJPQDBZZB9l1fZQoaAZHQGDiiJ40Mw1oB03oA2gIR0CT1P7jDKoydX2UKGgGR0BlZUunMt9QaAdN6ANoCEdAk+NZzcRDkXV9lChoBkdAZP+aBI4EOmgHTegDaAhHQJPkXO1OTJR1fZQoaAZHQGM/Af2bobJoB03oA2gIR0CT5RrHlwLmdX2UKGgGR0Bi4QazeGfxaAdN6ANoCEdAk+fbvoePrHV9lChoBkdAYhiTcIqsl2gHTegDaAhHQJPp/4etCAt1fZQoaAZHQGcwfzSThYNoB03oA2gIR0CT7EBZIQOGdX2UKGgGR0BeRn6InBtUaAdN6ANoCEdAk/B7Zi/fwnV9lChoBkdAXSvHJcPe6GgHTegDaAhHQJPxCFDfFaV1fZQoaAZHQGUwZ+QU5+9oB03oA2gIR0CT8bptaY/ndX2UKGgGR0BmxKyOaOPvaAdN6ANoCEdAk/NdK28Zk3V9lChoBkdAZKT41xbSqmgHTegDaAhHQJP50Dmr8zh1fZQoaAZHQGZerh73PAxoB03oA2gIR0CT+pPUKArhdX2UKGgGR0BgvlWdVea8aAdN6ANoCEdAk/wR4Y77sXV9lChoBkdASXIA0bcXWWgHS/hoCEdAk/y1TrE9+3V9lChoBkdAYB14Glhw2mgHTegDaAhHQJQEbTuv2Xd1fZQoaAZHQGKgGvwEyL1oB03oA2gIR0CUGE0EHMUzdX2UKGgGR0BEAog/1QIlaAdNHwFoCEdAlBzN+1Bt13V9lChoBkdAZpaOHWSU1WgHTegDaAhHQJQdSkgwGnp1fZQoaAZHQGPUp7b+Lm9oB03oA2gIR0CUKSDiwSrYdX2UKGgGR0BnP45o4+8oaAdN6ANoCEdAlCoe6mO2iXV9lChoBkdAY7CIhQm/nGgHTegDaAhHQJQq2M+/xlR1fZQoaAZHQGYX4dIXj2loB03oA2gIR0CULb/RmbsodX2UKGgGR0BhRgqmTC+DaAdN6ANoCEdAlDAAavRqoXV9lChoBkdAYrx6QeV9nmgHTegDaAhHQJQyd/qgRK91fZQoaAZHQGK33+uNgjRoB03oA2gIR0CUNy052hZhdX2UKGgGR0Bh/Jkwvg3taAdN6ANoCEdAlDiou01IiHV9lChoBkdAYmWFlCkXUGgHTegDaAhHQJQ7L1ZkkKN1fZQoaAZHQGdmqji4rjJoB03oA2gIR0CURHIOpbUxdX2UKGgGR0BiNalFc6eYaAdN6ANoCEdAlEb+/Dcdo3V9lChoBkdAZYnqY7aIvmgHTegDaAhHQJRHs2UB4lh1fZQoaAZHQGRuKgAZKnNoB03oA2gIR0CUUA4aP0ZndX2UKGgGR0BjiVWOp84QaAdN6ANoCEdAlFC9qpLmIXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}