Safetensors
mpt
custom_code
gosshh commited on
Commit
42e6757
·
verified ·
1 Parent(s): e2c082f

Upload 25 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/teaser.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/radar.png filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Krutrim Community License Agreement Version 1.0
2
+
3
+ 1. Definitions:
4
+ "Software" refers to the code, documentation, models, APIs, libraries, scripts, and any associated materials provided under this license, relating to Krutrim Community License including updates, modifications, enhancements, and derivative works.
5
+ "You" or "Licensee" refers to the individual, organization, or legal entity exercising rights under this license, including its employees, contractors, and affiliates.
6
+ "Modification" means any alteration to the Software, including but not limited to changes, improvements, enhancements, translations, adaptations, or derivative works based on the original Software.
7
+ "Commercial Use" means any use of the Software intended for commercial advantage or monetary compensation where more than 1 million monthly active users of the Licensee use the Software.
8
+ "Distribution" refers to the act of making the Software available to third parties through any means, including but not limited to physical media, downloads, or cloud-based platforms.
9
+ 2. Grant of License:
10
+ Subject to the terms and conditions of this Agreement, Krutrim grants you a worldwide, non-exclusive, non-transferable, revocable limited license to:
11
+ Use the Software for permitted purposes as outlined in this license, including research, academic, and personal projects.
12
+ Modify the Software for research and personal use, provided that all changes are clearly documented, and proper attribution is maintained.
13
+ Distribute the Software under specified conditions, ensuring compliance with attribution, modification transparency, and adherence to non-commercial restrictions where applicable.
14
+ This license does not constitute a sale of the Software and does not grant ownership rights. Krutrim retains all intellectual property rights not explicitly granted herein.
15
+ 3. Permitted Uses:
16
+ Research and Personal Use: Free to use, modify, and distribute for academic, educational, research, and personal purposes, provided proper attribution to Krutrim is included. This includes use in scientific studies, data analysis, and personal development projects.
17
+ Educational Use: Permitted in teaching, training, academic projects, and coursework without commercial exploitation. Use in online courses, educational programs, and classroom environments is encouraged, provided attribution is maintained.
18
+ Commercial Use: Commercial Use is permitted only through a separate commercial license agreement with Krutrim, which Krutrim may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Krutrim otherwise expressly grants you such rights.
19
+ 4. Prohibited Use: You agree you will not use, or allow others to use, Krutrim Community License to:
20
+ 4.1. Violate the law or others’ rights, including to:
21
+ a. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
22
+ i. Violence or terrorism
23
+ ii. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
24
+ iii. Human trafficking, exploitation, and sexual violence
25
+ iv. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
26
+ v. Sexual solicitation
27
+ vi. Any other criminal activity
28
+ b. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
29
+ c. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
30
+ d. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
31
+ e. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
32
+ f. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Krutrim Community License or Software therein
33
+ g. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
34
+ 4.2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Krutrim Community License related to the following:
35
+ a. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are prohibited under applicable laws
36
+ b. Guns and illegal weapons (including weapon development)
37
+ c. Illegal drugs and regulated/controlled substances
38
+ d. Operation of critical infrastructure, transportation technologies, or heavy machinery
39
+ e. Self-harm or harm to others, including suicide, cutting, and eating disorders
40
+ f. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
41
+ 4.3. Intentionally deceive or mislead others, including use of Krutrim Community License related to the following:
42
+ a. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
43
+ b. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
44
+ c. Generating, promoting, or further distributing spam
45
+ d. Impersonating another individual without consent, authorization, or legal right
46
+ e. Representing that the use of Krutrim Community License or outputs are human-generated
47
+ f. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
48
+ 5. Restriction on Use to compete with Krutrim:
49
+ The Software may not be used, directly or indirectly, by any person or any entity to develop, market, sell, or otherwise support products or services that compete with Krutrim’s core offerings.
50
+ This restriction applies to both internal development activities and any derivative works or products created based on the Software.
51
+ Violation of this clause will result in immediate termination of this license, along with potential legal action to seek damages and injunctive relief.
52
+
53
+ 6. Modification Rights:
54
+ You may modify the Software for personal and research purposes. All modifications must clearly document the changes made, including the date of modification, nature of the changes, and the author responsible.
55
+ Modified versions must retain this license, including proper attribution to Krutrim. Documentation of modifications should accompany any distributed versions.
56
+ Modified versions may not be distributed for Commercial Use without a separate agreement. Any commercial distribution of modified versions requires prior written consent from Krutrim.
57
+ 7. Distribution:
58
+ Non-Commercial Distribution: Allowed for academic and research purposes with proper attribution and inclusion of this license. Redistribution in open-source repositories or educational platforms is encouraged, provided attribution is visible.
59
+ Commercial Distribution: Prohibited unless authorized under a separate commercial agreement. This includes distribution through commercial platforms, integration into proprietary products, or bundling with paid services.
60
+ Distribution Requirements: All distributed copies, whether modified or unmodified, must include a copy of this license, clear attribution to Krutrim, and a description of any modifications. Distributors must ensure recipients are aware of these license terms.
61
+ 8. Patent Rights:
62
+ This license does not grant any express or implied patent rights. If your use of the Software involves activities that require patent rights, you must obtain a separate license from the respective patent holders. Krutrim makes no representations regarding third-party patent claims. Users are responsible for ensuring their use does not infringe on existing patents.
63
+ 9. Warranty Disclaimer:
64
+ The Software is provided "AS IS," without warranty of any kind, express or implied. This includes, but is not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement, or the absence of latent or other defects. You assume all risks associated with the use of the Software. Krutrim disclaims any responsibility for errors, bugs, or vulnerabilities that may arise.
65
+ 10. Attribution Requirements:
66
+ You must provide clear, visible attribution to "Krutrim" in any publication, presentation, distribution, or derivative work related to or connected with the Software. Attribution must appear in prominent locations such as documentation, user interfaces, academic papers, and software metadata.
67
+ The attribution should include the original project name, a link to the source repository or project homepage, and a statement acknowledging Krutrim’s contribution. Failure to provide proper attribution constitutes a breach of this license.
68
+ 11. Cloud Deployment:
69
+ Permitted: Deployment for academic, personal, and non-commercial research purposes is allowed, provided proper attribution to Krutrim is maintained. This includes hosting on private or public cloud platforms for non-commercial projects.
70
+ Restricted: Commercial cloud deployment, including SaaS offerings, for Commercial Use requires a separate commercial license agreement. This includes services that generate revenue through subscriptions, advertisements, or other commercial models.
71
+ 12. Research Use:
72
+ Permitted for academic, non-commercial research, provided proper attribution to Krutrim is included in any resulting publications, datasets, or presentations. Research may include data analysis, model training, simulations, and academic collaborations. Any research by a Licensee that is exploited commercially for economic gains would be construed as commercial use if it is used by more than the number of users identified under “Commercial Use”.
73
+ Research outputs, such as papers, models, or software, must cite Krutrim where the Software significantly contributed to the results. Failure to provide proper citation may result in license termination.
74
+ 13. Limitation of Liability:
75
+ In no event shall Krutrim or its contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages. This includes, but is not limited to, loss of data, profits, business interruptions, or any other commercial damages or losses, arising out of or in connection with the use or inability to use the Software, even if advised of the possibility of such damages. Users assume full responsibility for their reliance on the Software.
76
+ 14. Sub-licensing:
77
+ Sub-licensing is strictly prohibited. You may not grant, assign, or otherwise transfer any rights under this license to third parties. You may not impose additional restrictions on the Software beyond those specified in this license. Any attempt to sub-license will render this license null and void.
78
+ 15. Derivative Works and Model Training:
79
+ Permitted: You may train derivative models or develop derivative works for non-commercial, academic, or research purposes, provided you comply with attribution requirements. Derivative works should be clearly identified as modifications of the original Software.
80
+ Restricted: Any Commercial Use of derivative models, including monetization, deployment in commercial products, or offering as a service, requires explicit written permission from Krutrim. This includes using trained models in SaaS platforms, APIs, or enterprise software solutions.
81
+ 16. Compliance and Audits:
82
+ Krutrim reserves the right to request proof of compliance with this license. This may include, but is not limited to, documentation of modifications, usage logs, and details of distribution. Failure to provide such documentation may result in license termination. Krutrim may conduct audits to ensure compliance, with reasonable notice provided to the Licensee.
83
+ 17. Termination:
84
+ This license will terminate automatically if you fail to comply with any of its terms. Violations may include unauthorized commercial use, failure to provide attribution, or non-compliance with distribution requirements.
85
+ Upon termination, you must immediately cease all use, modification, and distribution of the Software and destroy all copies in your possession or control.
86
+ Termination does not relieve you of obligations accrued prior to termination, including any liabilities for breaches that occurred before termination.
87
+ 18. Governing Law and Dispute Resolution:
88
+ This Agreement shall be governed by and construed in accordance with the laws of India, without regard to its conflict of law principles.
89
+ Any disputes arising from this Agreement shall be subject to arbitration under the Indian Arbitration and Conciliation Act, 1996. The arbitration will be conducted in English, with the venue in Bangalore, India. The decision of the arbitrator shall be final and binding on all parties.
90
+ 19. Severability:
91
+ If any provision of this license is found to be invalid, illegal, or unenforceable, the remaining provisions shall continue in full force and effect. Any invalid provision shall be replaced with a valid one that comes closest to the original intent, ensuring the overall purpose of the license is preserved.
92
+ 20. Entire Agreement:
93
+ This license constitutes the complete and exclusive agreement between you and Krutrim concerning the Software. It supersedes any prior or contemporaneous agreements, communications, or understandings, whether written or oral. Any modifications to this license must be in writing and signed by both parties.
94
+ By using the Software, you acknowledge that you have read, understood, and agree to be bound by the terms of this license.
LICENSE.md ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # **Krutrim Community License Agreement Version 1.0**
2
+
3
+ ### **1\. Definitions:**
4
+
5
+ * "**Software**" refers to the code, documentation, models, APIs, libraries, scripts, and any associated materials provided under this license, relating to Krutrim Community License including updates, modifications, enhancements, and derivative works.
6
+ * "**You**" or "**Licensee**" refers to the individual, organization, or legal entity exercising rights under this license, including its employees, contractors, and affiliates.
7
+ * "**Modification**" means any alteration to the Software, including but not limited to changes, improvements, enhancements, translations, adaptations, or derivative works based on the original Software.
8
+ * "**Commercial** **Use**" means any use of the Software intended for commercial advantage or monetary compensation where more than 1 million monthly active users of the Licensee use the Software.
9
+ * "**Distribution**" refers to the act of making the Software available to third parties through any means, including but not limited to physical media, downloads, or cloud-based platforms.
10
+
11
+ ### **2\. Grant of License:**
12
+
13
+ Subject to the terms and conditions of this Agreement, Krutrim grants you a worldwide, non-exclusive, non-transferable, revocable limited license to:
14
+
15
+ * Use the Software for permitted purposes as outlined in this license, including research, academic, and personal projects.
16
+ * Modify the Software for research and personal use, provided that all changes are clearly documented, and proper attribution is maintained.
17
+ * Distribute the Software under specified conditions, ensuring compliance with attribution, modification transparency, and adherence to non-commercial restrictions where applicable.
18
+
19
+ This license does not constitute a sale of the Software and does not grant ownership rights. Krutrim retains all intellectual property rights not explicitly granted herein.
20
+
21
+ ### **3\. Permitted Uses:**
22
+
23
+ * Research and Personal Use: Free to use, modify, and distribute for academic, educational, research, and personal purposes, provided proper attribution to Krutrim is included. This includes use in scientific studies, data analysis, and personal development projects.
24
+ * Educational Use: Permitted in teaching, training, academic projects, and coursework without commercial exploitation. Use in online courses, educational programs, and classroom environments is encouraged, provided attribution is maintained.
25
+ * Commercial Use: Commercial Use is permitted only through a separate commercial license agreement with Krutrim, which Krutrim may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Krutrim otherwise expressly grants you such rights.
26
+
27
+ **4\. Prohibited Use:** You agree you will not use, or allow others to use, Krutrim Community License to:
28
+ 4.1. Violate the law or others’ rights, including to:
29
+ a. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
30
+ i. Violence or terrorism
31
+ ii. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
32
+ iii. Human trafficking, exploitation, and sexual violence
33
+ iv. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
34
+ v. Sexual solicitation
35
+ vi. Any other criminal activity
36
+ b. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
37
+ c. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
38
+ d. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
39
+ e. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
40
+ f. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Krutrim Community License or Software therein
41
+ g. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
42
+
43
+ 4.2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Krutrim Community License related to the following:
44
+ a. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are prohibited under applicable laws
45
+ b. Guns and illegal weapons (including weapon development)
46
+ c. Illegal drugs and regulated/controlled substances
47
+ d. Operation of critical infrastructure, transportation technologies, or heavy machinery
48
+ e. Self-harm or harm to others, including suicide, cutting, and eating disorders
49
+ f. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
50
+
51
+ 4.3. Intentionally deceive or mislead others, including use of Krutrim Community License related to the following:
52
+ a. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
53
+ b. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
54
+ c. Generating, promoting, or further distributing spam
55
+ d. Impersonating another individual without consent, authorization, or legal right
56
+ e. Representing that the use of Krutrim Community License or outputs are human-generated
57
+ f. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
58
+
59
+ **5\. Restriction on Use to compete with Krutrim:**
60
+
61
+ * The Software may not be used, directly or indirectly, by any person or any entity to develop, market, sell, or otherwise support products or services that compete with Krutrim’s core offerings.
62
+ * This restriction applies to both internal development activities and any derivative works or products created based on the Software.
63
+ * Violation of this clause will result in immediate termination of this license, along with potential legal action to seek damages and injunctive relief.
64
+
65
+ **6\. Modification Rights:**
66
+
67
+ * You may modify the Software for personal and research purposes. All modifications must clearly document the changes made, including the date of modification, nature of the changes, and the author responsible.
68
+ * Modified versions must retain this license, including proper attribution to Krutrim. Documentation of modifications should accompany any distributed versions.
69
+ * Modified versions may not be distributed for Commercial Use without a separate agreement. Any commercial distribution of modified versions requires prior written consent from Krutrim.
70
+
71
+ ### **7\. Distribution:**
72
+
73
+ * Non-Commercial Distribution: Allowed for academic and research purposes with proper attribution and inclusion of this license. Redistribution in open-source repositories or educational platforms is encouraged, provided attribution is visible.
74
+ * Commercial Distribution: Prohibited unless authorized under a separate commercial agreement. This includes distribution through commercial platforms, integration into proprietary products, or bundling with paid services.
75
+ * Distribution Requirements: All distributed copies, whether modified or unmodified, must include a copy of this license, clear attribution to Krutrim, and a description of any modifications. Distributors must ensure recipients are aware of these license terms.
76
+
77
+ ### **8\. Patent Rights:** This license does not grant any express or implied patent rights. If your use of the Software involves activities that require patent rights, you must obtain a separate license from the respective patent holders. Krutrim makes no representations regarding third-party patent claims. Users are responsible for ensuring their use does not infringe on existing patents.
78
+
79
+ ### **9\. Warranty Disclaimer:**
80
+
81
+ The Software is provided "AS IS," without warranty of any kind, express or implied. This includes, but is not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement, or the absence of latent or other defects. You assume all risks associated with the use of the Software. Krutrim disclaims any responsibility for errors, bugs, or vulnerabilities that may arise.
82
+
83
+ ### **10\. Attribution Requirements:**
84
+
85
+ * You must provide clear, visible attribution to "Krutrim" in any publication, presentation, distribution, or derivative work related to or connected with the Software. Attribution must appear in prominent locations such as documentation, user interfaces, academic papers, and software metadata.
86
+ * The attribution should include the original project name, a link to the source repository or project homepage, and a statement acknowledging Krutrim’s contribution. Failure to provide proper attribution constitutes a breach of this license.
87
+
88
+ **11**. **Cloud Deployment**:
89
+
90
+ * **Permitted**: Deployment for academic, personal, and non-commercial research purposes is allowed, provided proper attribution to Krutrim is maintained. This includes hosting on private or public cloud platforms for non-commercial projects.
91
+ * **Restricted**: Commercial cloud deployment, including SaaS offerings, for Commercial Use requires a separate commercial license agreement. This includes services that generate revenue through subscriptions, advertisements, or other commercial models.
92
+
93
+ **12**. **Research Use**:
94
+
95
+ * Permitted for academic, non-commercial research, provided proper attribution to Krutrim is included in any resulting publications, datasets, or presentations. Research may include data analysis, model training, simulations, and academic collaborations. Any research by a Licensee that is exploited commercially for economic gains would be construed as commercial use if it is used by more than the number of users identified under “Commercial Use”.
96
+ * Research outputs, such as papers, models, or software, must cite Krutrim where the Software significantly contributed to the results. Failure to provide proper citation may result in license termination.
97
+
98
+ ### **13\. Limitation of Liability:**
99
+
100
+ In no event shall Krutrim or its contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages. This includes, but is not limited to, loss of data, profits, business interruptions, or any other commercial damages or losses, arising out of or in connection with the use or inability to use the Software, even if advised of the possibility of such damages. Users assume full responsibility for their reliance on the Software.
101
+
102
+ ### **14\. Sub-licensing:**
103
+
104
+ Sub-licensing is strictly prohibited. You may not grant, assign, or otherwise transfer any rights under this license to third parties. You may not impose additional restrictions on the Software beyond those specified in this license. Any attempt to sub-license will render this license null and void.
105
+
106
+ ### **15\. Derivative Works and Model Training:**
107
+
108
+ * **Permitted**: You may train derivative models or develop derivative works for non-commercial, academic, or research purposes, provided you comply with attribution requirements. Derivative works should be clearly identified as modifications of the original Software.
109
+ * **Restricted**: Any Commercial Use of derivative models, including monetization, deployment in commercial products, or offering as a service, requires explicit written permission from Krutrim. This includes using trained models in SaaS platforms, APIs, or enterprise software solutions.
110
+
111
+ ### **16\. Compliance and Audits:**
112
+
113
+ Krutrim reserves the right to request proof of compliance with this license. This may include, but is not limited to, documentation of modifications, usage logs, and details of distribution. Failure to provide such documentation may result in license termination. Krutrim may conduct audits to ensure compliance, with reasonable notice provided to the Licensee.
114
+
115
+ ### **17\. Termination:**
116
+
117
+ * This license will terminate automatically if you fail to comply with any of its terms. Violations may include unauthorized commercial use, failure to provide attribution, or non-compliance with distribution requirements.
118
+ * Upon termination, you must immediately cease all use, modification, and distribution of the Software and destroy all copies in your possession or control.
119
+ * Termination does not relieve you of obligations accrued prior to termination, including any liabilities for breaches that occurred before termination.
120
+
121
+ ### **18\. Governing Law and Dispute Resolution:**
122
+
123
+ * This Agreement shall be governed by and construed in accordance with the laws of India, without regard to its conflict of law principles.
124
+ * Any disputes arising from this Agreement shall be subject to arbitration under the Indian Arbitration and Conciliation Act, 1996\. The arbitration will be conducted in English, with the venue in Bangalore, India. The decision of the arbitrator shall be final and binding on all parties.
125
+
126
+ ### **19\. Severability:**
127
+
128
+ If any provision of this license is found to be invalid, illegal, or unenforceable, the remaining provisions shall continue in full force and effect. Any invalid provision shall be replaced with a valid one that comes closest to the original intent, ensuring the overall purpose of the license is preserved.
129
+
130
+ ### **20\. Entire Agreement:**
131
+
132
+ This license constitutes the complete and exclusive agreement between you and Krutrim concerning the Software. It supersedes any prior or contemporaneous agreements, communications, or understandings, whether written or oral. Any modifications to this license must be in writing and signed by both parties.
133
+
134
+ By using the Software, you acknowledge that you have read, understood, and agree to be bound by the terms of this license.# **Krutrim Community License Agreement Version 1.0**
135
+
136
+ ### **1\. Definitions:**
137
+
138
+ * "**Software**" refers to the code, documentation, models, APIs, libraries, scripts, and any associated materials provided under this license, relating to Krutrim Community License including updates, modifications, enhancements, and derivative works.
139
+ * "**You**" or "**Licensee**" refers to the individual, organization, or legal entity exercising rights under this license, including its employees, contractors, and affiliates.
140
+ * "**Modification**" means any alteration to the Software, including but not limited to changes, improvements, enhancements, translations, adaptations, or derivative works based on the original Software.
141
+ * "**Commercial** **Use**" means any use of the Software intended for commercial advantage or monetary compensation where more than 1 million monthly active users of the Licensee use the Software.
142
+ * "**Distribution**" refers to the act of making the Software available to third parties through any means, including but not limited to physical media, downloads, or cloud-based platforms.
143
+
144
+ ### **2\. Grant of License:**
145
+
146
+ Subject to the terms and conditions of this Agreement, Krutrim grants you a worldwide, non-exclusive, non-transferable, revocable limited license to:
147
+
148
+ * Use the Software for permitted purposes as outlined in this license, including research, academic, and personal projects.
149
+ * Modify the Software for research and personal use, provided that all changes are clearly documented, and proper attribution is maintained.
150
+ * Distribute the Software under specified conditions, ensuring compliance with attribution, modification transparency, and adherence to non-commercial restrictions where applicable.
151
+
152
+ This license does not constitute a sale of the Software and does not grant ownership rights. Krutrim retains all intellectual property rights not explicitly granted herein.
153
+
154
+ ### **3\. Permitted Uses:**
155
+
156
+ * Research and Personal Use: Free to use, modify, and distribute for academic, educational, research, and personal purposes, provided proper attribution to Krutrim is included. This includes use in scientific studies, data analysis, and personal development projects.
157
+ * Educational Use: Permitted in teaching, training, academic projects, and coursework without commercial exploitation. Use in online courses, educational programs, and classroom environments is encouraged, provided attribution is maintained.
158
+ * Commercial Use: Commercial Use is permitted only through a separate commercial license agreement with Krutrim, which Krutrim may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Krutrim otherwise expressly grants you such rights.
159
+
160
+ **4\. Prohibited Use:** You agree you will not use, or allow others to use, Krutrim Community License to:
161
+ 4.1. Violate the law or others’ rights, including to:
162
+ a. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
163
+ i. Violence or terrorism
164
+ ii. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
165
+ iii. Human trafficking, exploitation, and sexual violence
166
+ iv. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
167
+ v. Sexual solicitation
168
+ vi. Any other criminal activity
169
+ b. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
170
+ c. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
171
+ d. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
172
+ e. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
173
+ f. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Krutrim Community License or Software therein
174
+ g. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
175
+
176
+ 4.2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Krutrim Community License related to the following:
177
+ a. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are prohibited under applicable laws
178
+ b. Guns and illegal weapons (including weapon development)
179
+ c. Illegal drugs and regulated/controlled substances
180
+ d. Operation of critical infrastructure, transportation technologies, or heavy machinery
181
+ e. Self-harm or harm to others, including suicide, cutting, and eating disorders
182
+ f. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
183
+
184
+ 4.3. Intentionally deceive or mislead others, including use of Krutrim Community License related to the following:
185
+ a. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
186
+ b. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
187
+ c. Generating, promoting, or further distributing spam
188
+ d. Impersonating another individual without consent, authorization, or legal right
189
+ e. Representing that the use of Krutrim Community License or outputs are human-generated
190
+ f. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
191
+
192
+ **5\. Restriction on Use to compete with Krutrim:**
193
+
194
+ * The Software may not be used, directly or indirectly, by any person or any entity to develop, market, sell, or otherwise support products or services that compete with Krutrim’s core offerings.
195
+ * This restriction applies to both internal development activities and any derivative works or products created based on the Software.
196
+ * Violation of this clause will result in immediate termination of this license, along with potential legal action to seek damages and injunctive relief.
197
+
198
+ **6\. Modification Rights:**
199
+
200
+ * You may modify the Software for personal and research purposes. All modifications must clearly document the changes made, including the date of modification, nature of the changes, and the author responsible.
201
+ * Modified versions must retain this license, including proper attribution to Krutrim. Documentation of modifications should accompany any distributed versions.
202
+ * Modified versions may not be distributed for Commercial Use without a separate agreement. Any commercial distribution of modified versions requires prior written consent from Krutrim.
203
+
204
+ ### **7\. Distribution:**
205
+
206
+ * Non-Commercial Distribution: Allowed for academic and research purposes with proper attribution and inclusion of this license. Redistribution in open-source repositories or educational platforms is encouraged, provided attribution is visible.
207
+ * Commercial Distribution: Prohibited unless authorized under a separate commercial agreement. This includes distribution through commercial platforms, integration into proprietary products, or bundling with paid services.
208
+ * Distribution Requirements: All distributed copies, whether modified or unmodified, must include a copy of this license, clear attribution to Krutrim, and a description of any modifications. Distributors must ensure recipients are aware of these license terms.
209
+
210
+ ### **8\. Patent Rights:** This license does not grant any express or implied patent rights. If your use of the Software involves activities that require patent rights, you must obtain a separate license from the respective patent holders. Krutrim makes no representations regarding third-party patent claims. Users are responsible for ensuring their use does not infringe on existing patents.
211
+
212
+ ### **9\. Warranty Disclaimer:**
213
+
214
+ The Software is provided "AS IS," without warranty of any kind, express or implied. This includes, but is not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement, or the absence of latent or other defects. You assume all risks associated with the use of the Software. Krutrim disclaims any responsibility for errors, bugs, or vulnerabilities that may arise.
215
+
216
+ ### **10\. Attribution Requirements:**
217
+
218
+ * You must provide clear, visible attribution to "Krutrim" in any publication, presentation, distribution, or derivative work related to or connected with the Software. Attribution must appear in prominent locations such as documentation, user interfaces, academic papers, and software metadata.
219
+ * The attribution should include the original project name, a link to the source repository or project homepage, and a statement acknowledging Krutrim’s contribution. Failure to provide proper attribution constitutes a breach of this license.
220
+
221
+ **11**. **Cloud Deployment**:
222
+
223
+ * **Permitted**: Deployment for academic, personal, and non-commercial research purposes is allowed, provided proper attribution to Krutrim is maintained. This includes hosting on private or public cloud platforms for non-commercial projects.
224
+ * **Restricted**: Commercial cloud deployment, including SaaS offerings, for Commercial Use requires a separate commercial license agreement. This includes services that generate revenue through subscriptions, advertisements, or other commercial models.
225
+
226
+ **12**. **Research Use**:
227
+
228
+ * Permitted for academic, non-commercial research, provided proper attribution to Krutrim is included in any resulting publications, datasets, or presentations. Research may include data analysis, model training, simulations, and academic collaborations. Any research by a Licensee that is exploited commercially for economic gains would be construed as commercial use if it is used by more than the number of users identified under “Commercial Use”.
229
+ * Research outputs, such as papers, models, or software, must cite Krutrim where the Software significantly contributed to the results. Failure to provide proper citation may result in license termination.
230
+
231
+ ### **13\. Limitation of Liability:**
232
+
233
+ In no event shall Krutrim or its contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages. This includes, but is not limited to, loss of data, profits, business interruptions, or any other commercial damages or losses, arising out of or in connection with the use or inability to use the Software, even if advised of the possibility of such damages. Users assume full responsibility for their reliance on the Software.
234
+
235
+ ### **14\. Sub-licensing:**
236
+
237
+ Sub-licensing is strictly prohibited. You may not grant, assign, or otherwise transfer any rights under this license to third parties. You may not impose additional restrictions on the Software beyond those specified in this license. Any attempt to sub-license will render this license null and void.
238
+
239
+ ### **15\. Derivative Works and Model Training:**
240
+
241
+ * **Permitted**: You may train derivative models or develop derivative works for non-commercial, academic, or research purposes, provided you comply with attribution requirements. Derivative works should be clearly identified as modifications of the original Software.
242
+ * **Restricted**: Any Commercial Use of derivative models, including monetization, deployment in commercial products, or offering as a service, requires explicit written permission from Krutrim. This includes using trained models in SaaS platforms, APIs, or enterprise software solutions.
243
+
244
+ ### **16\. Compliance and Audits:**
245
+
246
+ Krutrim reserves the right to request proof of compliance with this license. This may include, but is not limited to, documentation of modifications, usage logs, and details of distribution. Failure to provide such documentation may result in license termination. Krutrim may conduct audits to ensure compliance, with reasonable notice provided to the Licensee.
247
+
248
+ ### **17\. Termination:**
249
+
250
+ * This license will terminate automatically if you fail to comply with any of its terms. Violations may include unauthorized commercial use, failure to provide attribution, or non-compliance with distribution requirements.
251
+ * Upon termination, you must immediately cease all use, modification, and distribution of the Software and destroy all copies in your possession or control.
252
+ * Termination does not relieve you of obligations accrued prior to termination, including any liabilities for breaches that occurred before termination.
253
+
254
+ ### **18\. Governing Law and Dispute Resolution:**
255
+
256
+ * This Agreement shall be governed by and construed in accordance with the laws of India, without regard to its conflict of law principles.
257
+ * Any disputes arising from this Agreement shall be subject to arbitration under the Indian Arbitration and Conciliation Act, 1996\. The arbitration will be conducted in English, with the venue in Bangalore, India. The decision of the arbitrator shall be final and binding on all parties.
258
+
259
+ ### **19\. Severability:**
260
+
261
+ If any provision of this license is found to be invalid, illegal, or unenforceable, the remaining provisions shall continue in full force and effect. Any invalid provision shall be replaced with a valid one that comes closest to the original intent, ensuring the overall purpose of the license is preserved.
262
+
263
+ ### **20\. Entire Agreement:**
264
+
265
+ This license constitutes the complete and exclusive agreement between you and Krutrim concerning the Software. It supersedes any prior or contemporaneous agreements, communications, or understandings, whether written or oral. Any modifications to this license must be in writing and signed by both parties.
266
+
267
+ By using the Software, you acknowledge that you have read, understood, and agree to be bound by the terms of this license.
README.md CHANGED
@@ -1,3 +1,96 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: krutrim-community-license-agreement-version-1.0
4
+ license_link: LICENSE.md
5
+ language:
6
+ - hi
7
+ - bn
8
+ - ta
9
+ - te
10
+ - gu
11
+ - or
12
+ - en
13
+ - as
14
+ - ml
15
+ - mr
16
+ - kn
17
+ ---
18
+ # Chitrarth: Bridging Vision and Language for a Billion People
19
+ [![Static Badge](https://img.shields.io/badge/Huggingface-Chitrarth-yellow?logo=huggingface)](https://huggingface.co/krutrim-ai-labs/chitrarth) [![Static Badge](https://img.shields.io/badge/Github-Chitrarth-green?logo=github)](https://github.com/ola-krutrim/Chitrarth) [![Static Badge](https://img.shields.io/badge/Krutrim_Cloud-Chitrarth-orange?logo=)](https://cloud.olakrutrim.com/console/inference-service?section=models&modelName=Krutrim&artifactName=chitrarth&artifactType=model) [![Static Badge](https://img.shields.io/badge/Krutrim_AI_Labs-Chitrarth-blue?logo=)](https://ai-labs.olakrutrim.com/models/Chitrarth-1)
20
+
21
+ ## 1. Introduction
22
+
23
+ Chitrarth (Chitra: Image; Artha: Meaning) is a multilingual VLM that integrates a state-of-the-art multilingual Large Language Model (LLM) with a vision module. This model is trained primarily on multilingual image-text data and is designed to work across 10 prominent Indian languages, including Hindi, Bengali, Telugu, Tamil, Marathi, Gujarati, Kannada, Malayalam, Odia, and Assamese, as well as English
24
+
25
+ [![Chitrarth](https://img.youtube.com/vi/TmzEweLIgsc/0.jpg)](https://www.youtube.com/watch?v=TmzEweLIgsc)
26
+
27
+ ## 2. Model Summary
28
+
29
+ ### Key Features
30
+ - **Model:** Krutrim-1 as the base LLM, SigLIP as the visual encoder with 2 layer MLP
31
+ - **Languages Supported:** 10 Indic languages - Hindi, Bengali, Telugu, Tamil, Marathi, Gujarati, Kannada, Malayalam, Odia, and Assamese, as well as English
32
+ - **Usage:** General purpose VLM
33
+
34
+ ![model](assets/model.png)
35
+
36
+
37
+ ## 3. API Platform
38
+ Visit [Chitrarth Online](https://cloud.olakrutrim.com/console/inference-service?section=models&modelName=Krutrim&artifactName=chitrarth&artifactType=model) to access the model via the web interface.
39
+
40
+
41
+ ## 4. Inference code
42
+
43
+
44
+ ```
45
+ git clone https://github.com/ola-krutrim/Chitrarth.git
46
+ conda create --name chitrarth python=3.10
47
+ conda activate chitrarth
48
+
49
+ cd Chitrarth
50
+ pip install -e .
51
+
52
+ python chitrarth/inference.py --model-path "krutrim-ai-labs/chitrarth" --image-file "assets/govt_school.jpeg" --query "Explain the image. "
53
+ ```
54
+
55
+ ## 5. Evaluation Results
56
+
57
+
58
+ ![model](assets/radar.png)
59
+
60
+ Performance against SOTA VLMs on different academic multimodal tasks. Our model consistently outperforms IDEFICS 2 (7B) and PALO 7B on different benchmarks while remaining competitive on TextVQA and Vizwiz.
61
+
62
+ We introduce **BharatBench**, a comprehensive evaluation benchmark suite designed for **10 under-resourced Indic languages** across **3 tasks**. The performance of **Chitrarth** on the BharatBench Evaluation framework sets a strong baseline for future research in this domain. Our model is unique in its ability to handle all included languages.
63
+
64
+ Below are the performance results of **Chitrarth** on BharatBench across three evaluation tasks: **POPE**, **LLaVA-Bench**, and **MMVet**.
65
+
66
+ | **Language** | **POPE** | **LLaVA-Bench** | **MMVet** |
67
+ |----------------|----------|-----------------|-----------|
68
+ | **Telugu** | 79.9 | 54.8 | 43.76 |
69
+ | **Hindi** | 78.68 | 51.5 | 38.85 |
70
+ | **Bengali** | 83.24 | 53.7 | 33.24 |
71
+ | **Malayalam** | 85.29 | 55.5 | 25.36 |
72
+ | **Kannada** | 85.52 | 58.1 | 46.19 |
73
+ | **Assamese** | 55.59 | 59.1 | 37.29 |
74
+ | **Tamil** | 83.28 | 58.3 | 34.31 |
75
+ | **Marathi** | 79.17 | 52.8 | 40.96 |
76
+ | **Gujarati** | 84.75 | 55.9 | 39.03 |
77
+ | **Odia** | 82.03 | 62.8 | 19.67 |
78
+ | **English** | 87.63 | 67.9 | 30.49 |
79
+
80
+ ## 6. License
81
+ This code repository and the model weights are licensed under the [Krutrim Community License.](LICENSE.md)
82
+
83
+ ## 7. Citation
84
+
85
+ ```
86
+ @inproceedings{
87
+ khan2024chitrarth,
88
+ title={Chitrarth: Bridging Vision and Language for a Billion People},
89
+ author={Shaharukh Khan, Ayush Tarun, Abhinav Ravi, Ali Faraz, Praveen Kumar Pokala, Anagha Bhangare, Raja Kolla, Chandra Khatri, Shubham Agarwal},
90
+ booktitle={NeurIPS Multimodal Algorithmic Reasoning},
91
+ year={2024},
92
+ }
93
+ ```
94
+
95
+ ## 8. Contact
96
+ Contributions are welcome! If you have any improvements or suggestions, feel free to submit a pull request on GitHub.
attention.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Attention layers."""
2
+ import math
3
+ import warnings
4
+ from typing import Any, Optional
5
+ import torch
6
+ import torch.nn as nn
7
+ import transformers
8
+ from einops import rearrange
9
+ from packaging import version
10
+ from torch import nn
11
+ from .fc import FC_CLASS_REGISTRY
12
+ from .norm import NORM_CLASS_REGISTRY
13
+
14
+ def is_flash_v2_installed(v2_version: str='2.0.0'):
15
+ assert version.parse(v2_version) >= version.parse('2.0.0')
16
+ try:
17
+ import flash_attn as flash_attn
18
+ except:
19
+ return False
20
+ return version.parse(flash_attn.__version__) >= version.parse(v2_version)
21
+
22
+ def is_flash_v1_installed():
23
+ try:
24
+ import flash_attn as flash_attn
25
+ except:
26
+ return False
27
+ return version.parse(flash_attn.__version__) < version.parse('2.0.0')
28
+
29
+ def is_transformers_version_gte(hf_version: str) -> bool:
30
+ return version.parse(transformers.__version__) >= version.parse(hf_version)
31
+
32
+ def check_alibi_support(attention_impl: str) -> bool:
33
+ return attention_impl != 'flash' or is_flash_v2_installed(v2_version='v2.4.2')
34
+ if is_flash_v1_installed():
35
+ import transformers
36
+ transformers.utils.is_flash_attn_available = lambda: False
37
+ from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
38
+
39
+ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
40
+ if original_is_causal and num_query_tokens != num_key_tokens:
41
+ if num_query_tokens != 1:
42
+ raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
43
+ else:
44
+ return False
45
+ return original_is_causal
46
+
47
+ def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
48
+ """Perform repeat of kv heads along a particular dimension.
49
+
50
+ hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
51
+ n_rep: amount of repetitions of kv_n_heads
52
+ Unlike torch.repeat_interleave, this function avoids allocating new memory.
53
+ """
54
+ if n_rep == 1:
55
+ return hidden
56
+ b, s, kv_n_heads, d = hidden.shape
57
+ hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
58
+ return hidden.reshape(b, s, kv_n_heads * n_rep, d)
59
+
60
+ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
61
+ q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
62
+ k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
63
+ v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
64
+ if past_key_value is not None:
65
+ if len(past_key_value) != 0:
66
+ k = torch.cat([past_key_value[0], k], dim=3)
67
+ v = torch.cat([past_key_value[1], v], dim=2)
68
+ past_key_value = (k, v)
69
+ b, _, s_q, d = q.shape
70
+ s_k = k.size(-1)
71
+ if kv_n_heads > 1 and kv_n_heads < n_heads:
72
+ k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
73
+ v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
74
+ if softmax_scale is None:
75
+ softmax_scale = 1 / math.sqrt(d)
76
+ attn_weight = q.matmul(k) * softmax_scale
77
+ if attn_bias is not None:
78
+ _s_q = max(0, attn_bias.size(2) - s_q)
79
+ _s_k = max(0, attn_bias.size(3) - s_k)
80
+ attn_bias = attn_bias[:, :, _s_q:, _s_k:]
81
+ if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
82
+ raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
83
+ attn_weight = attn_weight + attn_bias
84
+ min_val = torch.finfo(q.dtype).min
85
+ if key_padding_mask is not None:
86
+ if attn_bias is not None:
87
+ warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
88
+ attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
89
+ if is_causal and (not q.size(2) == 1):
90
+ s = max(s_q, s_k)
91
+ causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
92
+ causal_mask = causal_mask.tril()
93
+ causal_mask = causal_mask.to(torch.bool)
94
+ causal_mask = ~causal_mask
95
+ causal_mask = causal_mask[-s_q:, -s_k:]
96
+ attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
97
+ attn_weight = torch.softmax(attn_weight, dim=-1)
98
+ if dropout_p:
99
+ attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
100
+ out = attn_weight.to(v.dtype).matmul(v)
101
+ out = rearrange(out, 'b h s d -> b s (h d)')
102
+ if needs_weights:
103
+ return (out, attn_weight, past_key_value)
104
+ return (out, None, past_key_value)
105
+
106
+ def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]]=None):
107
+ if valid_dtypes is None:
108
+ valid_dtypes = [torch.float16, torch.bfloat16]
109
+ for tensor in tensors:
110
+ if tensor.dtype not in valid_dtypes:
111
+ raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
112
+ if not tensor.is_cuda:
113
+ raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
114
+
115
+ def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
116
+ if key_padding_mask is not None:
117
+ raise ValueError('key_padding_mask should be None for flash attn.')
118
+ del key_padding_mask
119
+ if flash_attn_padding_info is None:
120
+ raise ValueError('flash_attn_padding_info is required for flash attn.')
121
+ try:
122
+ from flash_attn import bert_padding, flash_attn_interface
123
+ except:
124
+ raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6')
125
+ check_valid_inputs(query, key, value)
126
+ if past_key_value is not None:
127
+ if len(past_key_value) != 0:
128
+ key = torch.cat([past_key_value[0], key], dim=1)
129
+ value = torch.cat([past_key_value[1], value], dim=1)
130
+ past_key_value = (key, value)
131
+ if attn_bias is not None:
132
+ raise NotImplementedError(f'attn_bias not implemented for flash attn.')
133
+ batch_size, seqlen = query.shape[:2]
134
+ indices_q = flash_attn_padding_info['indices_q']
135
+ indices_k = flash_attn_padding_info['indices_k']
136
+ indices_v = flash_attn_padding_info['indices_v']
137
+ cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q']
138
+ cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k']
139
+ max_seqlen_q = flash_attn_padding_info['max_seqlen_q']
140
+ max_seqlen_k = flash_attn_padding_info['max_seqlen_k']
141
+ query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q)
142
+ query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
143
+ key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k)
144
+ key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
145
+ value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v)
146
+ value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
147
+ if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa):
148
+ raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.')
149
+ if should_repeat_kv_for_gqa:
150
+ if kv_n_heads == 1:
151
+ key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
152
+ value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
153
+ elif kv_n_heads < n_heads:
154
+ key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1)
155
+ value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1)
156
+ dropout_p = dropout_p if training else 0.0
157
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
158
+ if is_flash_v1_installed():
159
+ output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
160
+ elif is_flash_v2_installed():
161
+ alibi_kwargs = {}
162
+ if check_alibi_support('flash'):
163
+ alibi_kwargs = {'alibi_slopes': alibi_slopes}
164
+ elif alibi_slopes is not None:
165
+ raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2')
166
+ output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs)
167
+ else:
168
+ raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.')
169
+ output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
170
+ return (output, None, past_key_value)
171
+
172
+ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
173
+ try:
174
+ from .flash_attn_triton import flash_attn_func
175
+ except:
176
+ _installed = False
177
+ if version.parse(torch.__version__) < version.parse('2.0.0'):
178
+ _installed = True
179
+ try:
180
+ from flash_attn.flash_attn_triton import flash_attn_func
181
+ except:
182
+ _installed = False
183
+ if not _installed:
184
+ raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
185
+ check_valid_inputs(query, key, value)
186
+ if past_key_value is not None:
187
+ if len(past_key_value) != 0:
188
+ key = torch.cat([past_key_value[0], key], dim=1)
189
+ value = torch.cat([past_key_value[1], value], dim=1)
190
+ past_key_value = (key, value)
191
+ if attn_bias is not None:
192
+ _s_q = max(0, attn_bias.size(2) - query.size(1))
193
+ _s_k = max(0, attn_bias.size(3) - key.size(1))
194
+ attn_bias = attn_bias[:, :, _s_q:, _s_k:]
195
+ if dropout_p:
196
+ raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
197
+ dropout_p = dropout_p if training else 0.0
198
+ if needs_weights:
199
+ raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
200
+ if key_padding_mask is not None:
201
+ warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
202
+ b_size, s_k = key_padding_mask.shape[:2]
203
+ if attn_bias is None:
204
+ attn_bias = query.new_zeros(b_size, 1, 1, s_k)
205
+ attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
206
+ query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
207
+ key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
208
+ value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
209
+ if kv_n_heads == 1:
210
+ key = key.repeat(1, 1, n_heads, 1)
211
+ value = value.repeat(1, 1, n_heads, 1)
212
+ elif kv_n_heads < n_heads:
213
+ key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
214
+ value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
215
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
216
+ attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
217
+ output = attn_output.view(*attn_output.shape[:2], -1)
218
+ return (output, None, past_key_value)
219
+
220
+ class GroupedQueryAttention(nn.Module):
221
+ """Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
222
+
223
+ and Multi-query attention (MQA).
224
+
225
+ This allows the user to set a variable of number of kv_n_heads, rather than
226
+ just n_heads or 1, as in MHA and MQA. Using torch or triton attention
227
+ implementation enables user to also use additive bias.
228
+ """
229
+
230
+ def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
231
+ super().__init__()
232
+ self.attn_impl = attn_impl
233
+ self.clip_qkv = clip_qkv
234
+ self.qk_ln = qk_ln
235
+ self.qk_gn = qk_gn
236
+ self.d_model = d_model
237
+ self.n_heads = n_heads
238
+ self.kv_n_heads = kv_n_heads
239
+ self.sliding_window_size = sliding_window_size
240
+ self.head_dim = d_model // n_heads
241
+ if self.kv_n_heads <= 0:
242
+ raise ValueError('kv_n_heads should be greater than zero.')
243
+ if self.kv_n_heads > self.n_heads:
244
+ raise ValueError('The number of KV heads should be less than or equal to Q heads.')
245
+ if self.n_heads % self.kv_n_heads != 0:
246
+ raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
247
+ if qk_ln and qk_gn:
248
+ raise ValueError('Only one of qk_ln and qk_gn can be set to True.')
249
+ self.softmax_scale = softmax_scale
250
+ if self.softmax_scale is None:
251
+ self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
252
+ self.attn_dropout_p = attn_pdrop
253
+ fc_kwargs: dict[str, Any] = {'bias': bias}
254
+ fc_kwargs['device'] = device
255
+ self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
256
+ fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
257
+ self.Wqkv._fused = (0, fuse_splits)
258
+ if self.qk_ln or self.qk_gn:
259
+ norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
260
+ norm_size = self.head_dim if qk_gn else d_model
261
+ self.q_ln = norm_class(norm_size, device=device)
262
+ if qk_ln:
263
+ norm_size = self.head_dim * kv_n_heads
264
+ self.k_ln = norm_class(norm_size, device=device)
265
+ if self.attn_impl == 'flash':
266
+ self.attn_fn = flash_attn_fn
267
+ elif self.attn_impl == 'triton':
268
+ self.attn_fn = triton_flash_attn_fn
269
+ elif self.attn_impl == 'torch':
270
+ self.attn_fn = scaled_multihead_dot_product_attention
271
+ else:
272
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
273
+ self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
274
+ self.out_proj._is_residual = True
275
+
276
+ def forward(self, x: torch.Tensor, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[dict]=None, is_causal: bool=True, needs_weights: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
277
+ qkv = self.Wqkv(x)
278
+ if self.clip_qkv:
279
+ qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
280
+ query, key, value = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
281
+ key_padding_mask = attention_mask
282
+ if self.qk_ln or self.qk_gn:
283
+ q_shape, k_shape = (query.shape, key.shape)
284
+ if self.qk_gn:
285
+ b, s = query.shape[:2]
286
+ query = query.view(b, s, self.n_heads, -1)
287
+ key = key.view(b, s, self.kv_n_heads, -1)
288
+ dtype = query.dtype
289
+ query = self.q_ln(query).to(dtype).view(q_shape)
290
+ key = self.k_ln(key).to(dtype).view(k_shape)
291
+ if rotary_emb_w_meta_info is not None:
292
+ rotary_emb = rotary_emb_w_meta_info['rotary_emb']
293
+ seq_len = rotary_emb_w_meta_info['seq_len']
294
+ offset_info = rotary_emb_w_meta_info['offset_info']
295
+ bsz, seqlen = query.shape[:2]
296
+ query = query.view(bsz, seqlen, -1, self.head_dim)
297
+ key = key.view(bsz, seqlen, -1, self.head_dim)
298
+ if rotary_emb_w_meta_info['impl'] == 'dail':
299
+ value = value.view(bsz, seqlen, -1, self.head_dim)
300
+ kv = torch.stack([key, value], dim=2)
301
+ query, kv = rotary_emb(query, kv, seqlen_offset=offset_info, max_seqlen=seq_len)
302
+ [key, value] = torch.unbind(kv, dim=2)
303
+ value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
304
+ elif rotary_emb_w_meta_info['impl'] == 'hf':
305
+ cos, sin = rotary_emb(value, seq_len)
306
+ if is_transformers_version_gte('4.36'):
307
+ query, key = apply_rotary_pos_emb(query, key, cos, sin, offset_info, unsqueeze_dim=2)
308
+ else:
309
+ query = query.transpose(1, 2)
310
+ key = key.transpose(1, 2)
311
+ query, key = apply_rotary_pos_emb(query, key, cos, sin, offset_info)
312
+ query = query.transpose(1, 2)
313
+ key = key.transpose(1, 2)
314
+ query = query.view(bsz, seqlen, self.d_model)
315
+ key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
316
+ extra_attn_kwargs = {}
317
+ if self.attn_impl == 'flash':
318
+ key_padding_mask = None
319
+ extra_attn_kwargs = {'should_repeat_kv_for_gqa': not is_flash_v2_installed(), 'sliding_window_size': self.sliding_window_size, 'alibi_slopes': alibi_slopes, 'flash_attn_padding_info': flash_attn_padding_info}
320
+ context, attn_weights, past_key_value = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, **extra_attn_kwargs)
321
+ return (self.out_proj(context), attn_weights, past_key_value)
322
+
323
+ class MultiheadAttention(GroupedQueryAttention):
324
+ """Multi-head self attention.
325
+
326
+ Using torch or triton attention implementation enables user to also use
327
+ additive bias.
328
+ """
329
+
330
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
331
+ super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
332
+
333
+ class MultiQueryAttention(GroupedQueryAttention):
334
+ """Multi-Query self attention.
335
+
336
+ Using torch or triton attention implementation enables user to also use
337
+ additive bias.
338
+ """
339
+
340
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
341
+ super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
342
+
343
+ def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[tuple[int, int, int, int]]:
344
+ if attn_impl == 'flash':
345
+ return None
346
+ elif attn_impl in ['torch', 'triton']:
347
+ if alibi:
348
+ if (prefix_lm or not causal) or use_sequence_id:
349
+ return (1, n_heads, seq_len, seq_len)
350
+ return (1, n_heads, 1, seq_len)
351
+ elif prefix_lm or use_sequence_id:
352
+ return (1, 1, seq_len, seq_len)
353
+ return None
354
+ else:
355
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
356
+
357
+ def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
358
+ if attn_impl == 'flash':
359
+ return None
360
+ elif attn_impl in ['torch', 'triton']:
361
+ if alibi:
362
+ device, dtype = (attn_bias.device, attn_bias.dtype)
363
+ attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
364
+ return attn_bias
365
+ else:
366
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
367
+
368
+ def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None, return_1d: bool=False) -> torch.Tensor:
369
+ _n_heads = 2 ** math.ceil(math.log2(n_heads))
370
+ m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
371
+ m = m.mul(alibi_bias_max / _n_heads)
372
+ slopes = 1.0 / torch.pow(2, m)
373
+ if _n_heads != n_heads:
374
+ slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
375
+ if return_1d:
376
+ return slopes
377
+ return slopes.view(1, n_heads, 1, 1)
378
+
379
+ def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
380
+ alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
381
+ if full:
382
+ alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
383
+ alibi_bias = alibi_bias.abs().mul(-1)
384
+ slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
385
+ alibi_bias = alibi_bias * slopes
386
+ return alibi_bias.to(dtype=dtype)
387
+ ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}
blocks.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """GPT Blocks used for the GPT Model."""
2
+ from typing import Any, Dict, Optional, Tuple
3
+ import torch
4
+ import torch.nn as nn
5
+ from .attention import ATTN_CLASS_REGISTRY
6
+ from .ffn import FFN_CLASS_REGISTRY, build_ffn
7
+ from .norm import NORM_CLASS_REGISTRY
8
+ try:
9
+ from flash_attn.bert_padding import unpad_input, pad_input
10
+ except:
11
+ unpad_input, pad_input = (None, None)
12
+ attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'qk_gn': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'sliding_window_size': -1, 'alibi': False, 'alibi_bias_max': 8, 'rope': False, 'rope_theta': 10000, 'rope_impl': 'dail', 'rope_dail_config': {'type': 'original', 'pos_idx_in_fp32': True, 'xpos_scale_base': 512}, 'rope_hf_config': {'type': 'no_scaling', 'factor': 1.0}}
13
+
14
+ class MPTBlock(nn.Module):
15
+
16
+ def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
17
+ if attn_config is None:
18
+ attn_config = attn_config_defaults
19
+ if ffn_config is None:
20
+ ffn_config = {'ffn_type': 'mptmlp'}
21
+ del kwargs
22
+ super().__init__()
23
+ norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
24
+ assert isinstance(attn_config['attn_type'], str)
25
+ attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
26
+ args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max', 'rope', 'rope_theta', 'rope_impl', 'rope_dail_config', 'rope_hf_config'}
27
+ attn_config_subset_for_attn_class = {k: v for k, v in attn_config.items() if k not in args_to_exclude_in_attn_class}
28
+ self.norm_1 = norm_class(d_model, device=device)
29
+ self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
30
+ self.norm_2 = None
31
+ if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
32
+ self.norm_2 = norm_class(d_model, device=device)
33
+ self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
34
+ self.resid_attn_dropout = nn.Dropout(resid_pdrop)
35
+ self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
36
+ self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
37
+
38
+ def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[Dict]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
39
+ a = self.norm_1(x)
40
+ b, attn_weights, past_key_value = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions, alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
41
+ x = x + self.resid_attn_dropout(b)
42
+ m = x
43
+ if self.norm_2 is not None:
44
+ m = self.norm_2(x)
45
+ batch_size, seq_len = m.size()[:2]
46
+ indices = None
47
+ if not self.use_pad_tok_in_ffn:
48
+ assert unpad_input is not None
49
+ m, indices, _, _ = unpad_input(m, attention_mask)
50
+ n = self.ffn(m)
51
+ if not self.use_pad_tok_in_ffn:
52
+ assert pad_input is not None
53
+ n = pad_input(n, indices, batch_size, seq_len)
54
+ x = x + self.resid_ffn_dropout(n)
55
+ return (x, attn_weights, past_key_value)
config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/user/shahrukh/models/responder_v2_mpt",
3
+ "architectures": [
4
+ "LlavaMPTForCausalLM"
5
+ ],
6
+ "attn_config": {
7
+ "alibi": true,
8
+ "alibi_bias_max": 8,
9
+ "attn_impl": "flash",
10
+ "attn_pdrop": 0.0,
11
+ "attn_type": "grouped_query_attention",
12
+ "attn_uses_sequence_id": false,
13
+ "clip_qkv": 6,
14
+ "kv_n_heads": 8,
15
+ "prefix_lm": false,
16
+ "qk_gn": false,
17
+ "qk_ln": false,
18
+ "rope": false,
19
+ "rope_dail_config": {
20
+ "pos_idx_in_fp32": true,
21
+ "type": "original",
22
+ "xpos_scale_base": 512
23
+ },
24
+ "rope_hf_config": {
25
+ "factor": 1.0,
26
+ "type": "no_scaling"
27
+ },
28
+ "rope_impl": "dail",
29
+ "rope_theta": 10000,
30
+ "sliding_window_size": -1,
31
+ "softmax_scale": null
32
+ },
33
+ "auto_map": {
34
+ "AutoConfig": "configuration_mpt.MPTConfig",
35
+ "AutoModelForCausalLM": "modeling_mpt.MPTForCausalLM"
36
+ },
37
+ "d_model": 4608,
38
+ "emb_pdrop": 0.0,
39
+ "embedding_fraction": 1.0,
40
+ "expansion_ratio": 4,
41
+ "fc_type": "torch",
42
+ "ffn_config": {
43
+ "fc_type": "torch",
44
+ "ffn_type": "mptmlp"
45
+ },
46
+ "freeze_mm_mlp_adapter": false,
47
+ "hidden_size": 4608,
48
+ "image_aspect_ratio": "pad",
49
+ "image_grid_pinpoints": null,
50
+ "init_config": {
51
+ "emb_init_std": null,
52
+ "emb_init_uniform_lim": null,
53
+ "fan_mode": "fan_in",
54
+ "init_div_is_residual": true,
55
+ "init_gain": 0.0,
56
+ "init_nonlinearity": "relu",
57
+ "init_std": null,
58
+ "name": "kaiming_normal_"
59
+ },
60
+ "init_device": "cpu",
61
+ "learned_pos_emb": false,
62
+ "logit_scale": null,
63
+ "max_seq_len": 4096,
64
+ "mm_hidden_size": 1152,
65
+ "mm_projector_type": "mlp2x_gelu",
66
+ "mm_use_im_patch_token": false,
67
+ "mm_use_im_start_end": false,
68
+ "mm_vision_select_feature": "patch",
69
+ "mm_vision_select_layer": -2,
70
+ "mm_vision_tower": "google/siglip-so400m-patch14-384",
71
+ "model_type": "mpt",
72
+ "n_heads": 48,
73
+ "n_layers": 32,
74
+ "no_bias": true,
75
+ "norm_type": "low_precision_layernorm",
76
+ "resid_pdrop": 0.0,
77
+ "torch_dtype": "bfloat16",
78
+ "transformers_version": "4.37.0",
79
+ "tune_mm_mlp_adapter": false,
80
+ "use_cache": true,
81
+ "use_mm_proj": true,
82
+ "use_pad_tok_in_ffn": true,
83
+ "vocab_size": 70400
84
+ }
configuration_mpt.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A HuggingFace-style model configuration."""
2
+ import warnings
3
+ from typing import Any, Dict, Optional, Union
4
+ from transformers import PretrainedConfig
5
+ from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
6
+ from .blocks import attn_config_defaults
7
+ from .fc import FC_CLASS_REGISTRY
8
+ from .norm import LPLayerNorm
9
+ from .ffn import FFN_CLASS_REGISTRY
10
+ from .warnings import VersionedDeprecationWarning
11
+ ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
12
+ init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
13
+
14
+ class MPTConfig(PretrainedConfig):
15
+ model_type = 'mpt'
16
+
17
+ def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: Union[int, float]=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', tie_word_embeddings: bool=True, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
18
+ """The MPT configuration class.
19
+
20
+ Args:
21
+ d_model (int): The size of the embedding dimension of the model.
22
+ n_heads (int): The number of attention heads.
23
+ n_layers (int): The number of layers in the model.
24
+ expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
25
+ max_seq_len (int): The maximum sequence length of the model.
26
+ vocab_size (int): The size of the vocabulary.
27
+ resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
28
+ emb_pdrop (float): The dropout probability for the embedding layer.
29
+ learned_pos_emb (bool): Whether to use learned positional embeddings
30
+ attn_config (Dict): A dictionary used to configure the model's attention module:
31
+ attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
32
+ attn_pdrop (float): The dropout probability for the attention layers.
33
+ attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
34
+ qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
35
+ qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
36
+ clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
37
+ this value.
38
+ softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
39
+ use the default scale of ``1/sqrt(d_keys)``.
40
+ prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
41
+ extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
42
+ can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
43
+ attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
44
+ When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
45
+ which sub-sequence each token belongs to.
46
+ Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
47
+ sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
48
+ alibi (bool): Whether to use the alibi bias instead of position embeddings.
49
+ alibi_bias_max (int): The maximum value of the alibi bias.
50
+ rope (bool): Whether to use rotary positional embeddings.
51
+ rope_theta (int): The base frequency for rope.
52
+ rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
53
+ rope_dail_config (Dict): The configuration for the dail implementation of rope.
54
+ type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
55
+ pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
56
+ xpos_scale_base (float): The scale base for XPos (if using XPos).
57
+ rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
58
+ type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
59
+ factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
60
+ kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
61
+ ffn_config (Dict): A dictionary used to configure the model's ffn module:
62
+ ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
63
+ init_device (str): The device to use for parameter initialization.
64
+ logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
65
+ no_bias (bool): Whether to use bias in all layers.
66
+ embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
67
+ norm_type (str): choose type of norm to use
68
+ use_cache (bool): Whether or not the model should return the last key/values attentions
69
+ init_config (Dict): A dictionary used to configure the model initialization:
70
+ init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
71
+ 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
72
+ 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
73
+ init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
74
+ emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
75
+ emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
76
+ used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
77
+ init_std (float): The standard deviation of the normal distribution used to initialize the model,
78
+ if using the baseline_ parameter initialization scheme.
79
+ init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
80
+ fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
81
+ init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
82
+ ---
83
+ See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
84
+ fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
85
+ tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
86
+ use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
87
+ """
88
+ self.d_model = d_model
89
+ self.n_heads = n_heads
90
+ self.n_layers = n_layers
91
+ self.expansion_ratio = expansion_ratio
92
+ self.max_seq_len = max_seq_len
93
+ self.vocab_size = vocab_size
94
+ self.resid_pdrop = resid_pdrop
95
+ self.emb_pdrop = emb_pdrop
96
+ self.learned_pos_emb = learned_pos_emb
97
+ self.attn_config = attn_config
98
+ self.ffn_config = ffn_config
99
+ self.init_device = init_device
100
+ self.logit_scale = logit_scale
101
+ self.no_bias = no_bias
102
+ self.embedding_fraction = embedding_fraction
103
+ self.norm_type = norm_type
104
+ self.use_cache = use_cache
105
+ self.init_config = init_config
106
+ self.fc_type = fc_type
107
+ self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
108
+ if 'name' in kwargs:
109
+ del kwargs['name']
110
+ if 'loss_fn' in kwargs:
111
+ del kwargs['loss_fn']
112
+ if self.attn_config.get('alibi', False) or self.attn_config.get('rope', False):
113
+ self.learned_pos_emb = False
114
+ warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')
115
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
116
+ self._validate_config()
117
+
118
+ def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
119
+ for k, v in config_defaults.items():
120
+ if k not in config:
121
+ config[k] = v
122
+ elif isinstance(v, dict):
123
+ config[k] = self._set_config_defaults(config[k] if config[k] is not None else {}, v)
124
+ return config
125
+
126
+ def _validate_config(self) -> None:
127
+ self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
128
+ self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
129
+ self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
130
+ if self.d_model % self.n_heads != 0:
131
+ raise ValueError('d_model must be divisible by n_heads')
132
+ if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
133
+ raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
134
+ if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
135
+ raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
136
+ if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
137
+ raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
138
+ if self.attn_config['attn_impl'] == 'flash' and is_flash_v1_installed():
139
+ warnings.warn(VersionedDeprecationWarning('Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.', remove_version='0.6.0'))
140
+ if self.attn_config['attn_impl'] == 'triton' and (not self.attn_config['prefix_lm']):
141
+ warnings.warn(UserWarning('If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'))
142
+ # if self.attn_config['alibi'] and (not check_alibi_support(self.attn_config['attn_impl'])):
143
+ # raise NotImplementedError('alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention.')
144
+ if self.attn_config['attn_uses_sequence_id'] and (not (self.attn_config['attn_impl'] in ['torch', 'triton'] or (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.1.2')))):
145
+ raise NotImplementedError('attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention.')
146
+ if self.attn_config['rope'] and self.attn_config['rope_impl'] not in ['dail', 'hf']:
147
+ raise ValueError('If rope is being used then rope_impl should be either "dail", or "hf".')
148
+ if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'hf' and (self.attn_config['rope_hf_config']['type'] not in ['no_scaling', 'linear', 'dynamic']):
149
+ raise ValueError('If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".')
150
+ if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'dail':
151
+ if self.attn_config['rope_dail_config']['type'] not in ['original', 'xpos']:
152
+ raise ValueError('If using the dail implementation of rope, the type should be one of "original" or "xpos".')
153
+ if not is_flash_v2_installed(v2_version='2.0.1'):
154
+ raise ImportError('If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support')
155
+ if self.attn_config['sliding_window_size'] != -1 and (not (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.3.0'))):
156
+ raise NotImplementedError('sliding window only implemented with flash attention v2.3.0 or higher.')
157
+ if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
158
+ raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
159
+ if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
160
+ raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
161
+ if self.init_config.get('name', None) is None:
162
+ raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
163
+ if not (self.learned_pos_emb or self.attn_config['alibi'] or self.attn_config['rope']):
164
+ warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi or rope.')
165
+ if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
166
+ try:
167
+ import transformer_engine.pytorch as te
168
+ del te
169
+ except:
170
+ raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
171
+ if self.ffn_config['ffn_type'] == 'mptgeglu':
172
+ raise ValueError('API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. ' + 'See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details.')
173
+ elif self.ffn_config['ffn_type'] in ['mptmlp', 'mptglu']:
174
+ self.ffn_config['fc_type'] = self.fc_type
175
+ elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
176
+ self.ffn_config['bias'] = not self.no_bias
177
+ if 'ffn_act_fn' in self.ffn_config.keys():
178
+ raise ValueError(f'Transformer Engine block does not support custom activation functions.')
179
+ if not self.use_pad_tok_in_ffn:
180
+ try:
181
+ from flash_attn.bert_padding import unpad_input, pad_input
182
+ except:
183
+ raise ImportError('In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6')
fc.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ FC_CLASS_REGISTRY = {'torch': nn.Linear}
3
+ try:
4
+ import transformer_engine.pytorch as te
5
+ FC_CLASS_REGISTRY['te'] = te.Linear
6
+ except:
7
+ pass
ffn.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MPT Blocks used for the MPT Model."""
2
+ import logging
3
+ from copy import deepcopy
4
+ from functools import partial
5
+ from typing import Any, Callable, Optional, Union
6
+ import torch
7
+ import torch.nn as nn
8
+ from .fc import FC_CLASS_REGISTRY
9
+ try:
10
+ import transformer_engine.pytorch as te
11
+ except:
12
+ te = None
13
+ log = logging.getLogger(__name__)
14
+ _FFN_ACT_FN_DEFAULT = {'name': 'gelu', 'approximate': 'none'}
15
+
16
+ def resolve_ffn_act_fn(config: Optional[dict]=None) -> Callable[[torch.Tensor], torch.Tensor]:
17
+ """Resolve the activation function for the feed-forward network.
18
+
19
+ Args:
20
+ config (Optional[dict]): The configuration dictionary for the activation function.
21
+ The dict config must specify the 'name' of a torch.nn.functional activation
22
+ function. All of other key values pairs are bound to the function as a partial.
23
+
24
+ Returns:
25
+ Callable[[torch.Tensor], torch.Tensor]: The activation function.
26
+ """
27
+ if config is None:
28
+ config = _FFN_ACT_FN_DEFAULT
29
+ config = deepcopy(config)
30
+ name = config.pop('name')
31
+ if not hasattr(torch.nn.functional, name):
32
+ raise ValueError(f'Unrecognised activation function name ({name}).')
33
+ act = getattr(torch.nn.functional, name)
34
+ return partial(act, **config)
35
+ _DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT)
36
+
37
+ def resolve_ffn_hidden_size(d_model: int, expansion_ratio: Union[int, float], ffn_hidden_size: Optional[int]=None) -> int:
38
+ """Resolve the hidden size of the feed-forward network.
39
+
40
+ Args:
41
+ d_model (int): The dimension of the input and output of the feed-forward network.
42
+ expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network.
43
+ ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network.
44
+
45
+ Returns:
46
+ int: The hidden size of the feed-forward network.
47
+ """
48
+ if ffn_hidden_size is not None:
49
+ log.info(f'`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified.')
50
+ else:
51
+ ffn_hidden_size = int(d_model * expansion_ratio)
52
+ if ffn_hidden_size != d_model * expansion_ratio:
53
+ raise ValueError(f'`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r}).')
54
+ return ffn_hidden_size
55
+
56
+ class MPTMLP(nn.Module):
57
+
58
+ def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
59
+ super().__init__()
60
+ ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
61
+ self.fc_kwargs: dict[str, Any] = {'bias': bias}
62
+ self.fc_kwargs['device'] = device
63
+ self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, ffn_hidden_size, **self.fc_kwargs)
64
+ self.act = act_fn
65
+ self.down_proj = FC_CLASS_REGISTRY[fc_type](ffn_hidden_size, d_model, **self.fc_kwargs)
66
+ self.down_proj._is_residual = True
67
+
68
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
69
+ return self.down_proj(self.act(self.up_proj(x)))
70
+
71
+ class MPTGLU(MPTMLP):
72
+
73
+ def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
74
+ super().__init__(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, ffn_hidden_size=ffn_hidden_size, act_fn=act_fn, device=device, bias=bias)
75
+ self.gate_proj = FC_CLASS_REGISTRY[fc_type](d_model, self.up_proj.out_features, **self.fc_kwargs)
76
+
77
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
78
+ return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
79
+ FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP, 'mptglu': MPTGLU}
80
+ if te is not None:
81
+ te.LayerNormMLP._has_norm = True
82
+ FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
83
+
84
+ def build_ffn(d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, ffn_act_fn: Optional[dict]=None, device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
85
+ ffn_type = kwargs.pop('ffn_type')
86
+ if ffn_type in ['mptmlp', 'mptglu']:
87
+ if len(kwargs) > 0:
88
+ raise ValueError(f'MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}')
89
+ return FFN_CLASS_REGISTRY[ffn_type](d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, act_fn=resolve_ffn_act_fn(ffn_act_fn), ffn_hidden_size=ffn_hidden_size, device=device, bias=bias)
90
+ elif ffn_type == 'te_ln_mlp':
91
+ assert te is not None
92
+ ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
93
+ if ffn_act_fn is not None:
94
+ raise ValueError(f'Transformer Engine block does not support custom activation functions.')
95
+ return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs)
96
+ raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
flash_attn_triton.py ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
3
+ update imports to use 'triton_pre_mlir'
4
+
5
+ *Experimental* implementation of FlashAttention in Triton.
6
+ Tested with triton==2.0.0.dev20221202.
7
+ Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
8
+ other than 64:
9
+ https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
10
+ We'll update this implementation with the new Triton backend once this is fixed.
11
+
12
+ We use the FlashAttention implementation from Phil Tillet a starting point.
13
+ https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
14
+
15
+ Changes:
16
+ - Implement both causal and non-causal attention.
17
+ - Implement both self-attention and cross-attention.
18
+ - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
19
+ - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
20
+ - Support attention bias.
21
+ - Speed up the forward pass a bit, and only store the LSE instead of m and l.
22
+ - Make the backward for d=128 much faster by reducing register spilling.
23
+ - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
24
+ small batch size * nheads.
25
+
26
+ Caution:
27
+ - This is an *experimental* implementation. The forward pass should be quite robust but
28
+ I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
29
+ - This implementation has only been tested on A100.
30
+ - If you plan to use headdim other than 64 and 128, you should test for race conditions
31
+ (due to the Triton compiler), as done in tests/test_flash_attn.py
32
+ "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
33
+ for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
34
+ that there are none left for other head dimensions.
35
+
36
+ Differences between this Triton version and the CUDA version:
37
+ - Triton version doesn't support dropout.
38
+ - Triton forward is generally faster than CUDA forward, while Triton backward is
39
+ generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
40
+ than CUDA forward + backward.
41
+ - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
42
+ - Triton version supports attention bias, while CUDA version doesn't.
43
+ """
44
+ import math
45
+ import torch
46
+ import triton_pre_mlir as triton
47
+ import triton_pre_mlir.language as tl
48
+
49
+ @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
50
+ @triton.jit
51
+ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
52
+ start_m = tl.program_id(0)
53
+ off_hb = tl.program_id(1)
54
+ off_b = off_hb // nheads
55
+ off_h = off_hb % nheads
56
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
57
+ offs_n = tl.arange(0, BLOCK_N)
58
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
59
+ q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
60
+ k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
61
+ v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
62
+ if BIAS_TYPE == 'vector':
63
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
64
+ elif BIAS_TYPE == 'matrix':
65
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
66
+ t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
67
+ lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
68
+ m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
69
+ acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
70
+ if EVEN_M & EVEN_N:
71
+ if EVEN_HEADDIM:
72
+ q = tl.load(q_ptrs)
73
+ else:
74
+ q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
75
+ elif EVEN_HEADDIM:
76
+ q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
77
+ else:
78
+ q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
79
+ end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
80
+ for start_n in range(0, end_n, BLOCK_N):
81
+ start_n = tl.multiple_of(start_n, BLOCK_N)
82
+ if EVEN_N & EVEN_M:
83
+ if EVEN_HEADDIM:
84
+ k = tl.load(k_ptrs + start_n * stride_kn)
85
+ else:
86
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
87
+ elif EVEN_HEADDIM:
88
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
89
+ else:
90
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
91
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
92
+ qk += tl.dot(q, k, trans_b=True)
93
+ if not EVEN_N:
94
+ qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
95
+ if IS_CAUSAL:
96
+ qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
97
+ if BIAS_TYPE != 'none':
98
+ if BIAS_TYPE == 'vector':
99
+ if EVEN_N:
100
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
101
+ else:
102
+ bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
103
+ bias = bias[None, :]
104
+ elif BIAS_TYPE == 'matrix':
105
+ if EVEN_M & EVEN_N:
106
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
107
+ else:
108
+ bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
109
+ qk = qk * softmax_scale + bias
110
+ m_ij = tl.maximum(tl.max(qk, 1), lse_i)
111
+ p = tl.exp(qk - m_ij[:, None])
112
+ else:
113
+ m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
114
+ p = tl.exp(qk * softmax_scale - m_ij[:, None])
115
+ l_ij = tl.sum(p, 1)
116
+ acc_o_scale = tl.exp(m_i - m_ij)
117
+ tl.store(t_ptrs, acc_o_scale)
118
+ acc_o_scale = tl.load(t_ptrs)
119
+ acc_o = acc_o * acc_o_scale[:, None]
120
+ if EVEN_N & EVEN_M:
121
+ if EVEN_HEADDIM:
122
+ v = tl.load(v_ptrs + start_n * stride_vn)
123
+ else:
124
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
125
+ elif EVEN_HEADDIM:
126
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
127
+ else:
128
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
129
+ p = p.to(v.dtype)
130
+ acc_o += tl.dot(p, v)
131
+ m_i = m_ij
132
+ l_i_new = tl.exp(lse_i - m_ij) + l_ij
133
+ lse_i = m_ij + tl.log(l_i_new)
134
+ o_scale = tl.exp(m_i - lse_i)
135
+ tl.store(t_ptrs, o_scale)
136
+ o_scale = tl.load(t_ptrs)
137
+ acc_o = acc_o * o_scale[:, None]
138
+ start_m = tl.program_id(0)
139
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
140
+ lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
141
+ tl.store(lse_ptrs, lse_i)
142
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
143
+ out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
144
+ if EVEN_M:
145
+ if EVEN_HEADDIM:
146
+ tl.store(out_ptrs, acc_o)
147
+ else:
148
+ tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
149
+ elif EVEN_HEADDIM:
150
+ tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
151
+ else:
152
+ tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
153
+
154
+ @triton.jit
155
+ def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
156
+ start_m = tl.program_id(0)
157
+ off_hb = tl.program_id(1)
158
+ off_b = off_hb // nheads
159
+ off_h = off_hb % nheads
160
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
161
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
162
+ o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
163
+ do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
164
+ delta = tl.sum(o * do, axis=1)
165
+ tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
166
+
167
+ @triton.jit
168
+ def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
169
+ if EVEN_N & EVEN_M:
170
+ if EVEN_HEADDIM:
171
+ tl.store(dv_ptrs, dv)
172
+ tl.store(dk_ptrs, dk)
173
+ else:
174
+ tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
175
+ tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
176
+ elif EVEN_HEADDIM:
177
+ tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
178
+ tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
179
+ else:
180
+ tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
181
+ tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
182
+
183
+ @triton.jit
184
+ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
185
+ begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
186
+ offs_qm = begin_m + tl.arange(0, BLOCK_M)
187
+ offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
188
+ offs_m = tl.arange(0, BLOCK_M)
189
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
190
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
191
+ k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
192
+ v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
193
+ do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
194
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
195
+ if BIAS_TYPE == 'vector':
196
+ b_ptrs = Bias + offs_n
197
+ elif BIAS_TYPE == 'matrix':
198
+ b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
199
+ dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
200
+ dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
201
+ if begin_m >= seqlen_q:
202
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
203
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
204
+ _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
205
+ return
206
+ if EVEN_N & EVEN_M:
207
+ if EVEN_HEADDIM:
208
+ k = tl.load(k_ptrs)
209
+ v = tl.load(v_ptrs)
210
+ else:
211
+ k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
212
+ v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
213
+ elif EVEN_HEADDIM:
214
+ k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
215
+ v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
216
+ else:
217
+ k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
218
+ v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
219
+ num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
220
+ for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
221
+ start_m = tl.multiple_of(start_m, BLOCK_M)
222
+ offs_m_curr = start_m + offs_m
223
+ if EVEN_M & EVEN_HEADDIM:
224
+ q = tl.load(q_ptrs)
225
+ elif EVEN_HEADDIM:
226
+ q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
227
+ else:
228
+ q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
229
+ qk = tl.dot(q, k, trans_b=True)
230
+ if not EVEN_N:
231
+ qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
232
+ if IS_CAUSAL:
233
+ qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
234
+ if BIAS_TYPE != 'none':
235
+ tl.debug_barrier()
236
+ if BIAS_TYPE == 'vector':
237
+ if EVEN_N:
238
+ bias = tl.load(b_ptrs).to(tl.float32)
239
+ else:
240
+ bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
241
+ bias = bias[None, :]
242
+ elif BIAS_TYPE == 'matrix':
243
+ if EVEN_M & EVEN_N:
244
+ bias = tl.load(b_ptrs).to(tl.float32)
245
+ else:
246
+ bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
247
+ qk = qk * softmax_scale + bias
248
+ if not EVEN_M & EVEN_HEADDIM:
249
+ tl.debug_barrier()
250
+ lse_i = tl.load(LSE + offs_m_curr)
251
+ if BIAS_TYPE == 'none':
252
+ p = tl.exp(qk * softmax_scale - lse_i[:, None])
253
+ else:
254
+ p = tl.exp(qk - lse_i[:, None])
255
+ if EVEN_M & EVEN_HEADDIM:
256
+ do = tl.load(do_ptrs)
257
+ else:
258
+ do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
259
+ dv += tl.dot(p.to(do.dtype), do, trans_a=True)
260
+ if not EVEN_M & EVEN_HEADDIM:
261
+ tl.debug_barrier()
262
+ dp = tl.dot(do, v, trans_b=True)
263
+ if not EVEN_HEADDIM:
264
+ tl.debug_barrier()
265
+ Di = tl.load(D + offs_m_curr)
266
+ ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
267
+ dk += tl.dot(ds, q, trans_a=True)
268
+ if not EVEN_M & EVEN_HEADDIM:
269
+ tl.debug_barrier()
270
+ if not ATOMIC_ADD:
271
+ if EVEN_M & EVEN_HEADDIM:
272
+ dq = tl.load(dq_ptrs, eviction_policy='evict_last')
273
+ dq += tl.dot(ds, k)
274
+ tl.store(dq_ptrs, dq, eviction_policy='evict_last')
275
+ elif EVEN_HEADDIM:
276
+ dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
277
+ dq += tl.dot(ds, k)
278
+ tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
279
+ else:
280
+ dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
281
+ dq += tl.dot(ds, k)
282
+ tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
283
+ else:
284
+ dq = tl.dot(ds, k)
285
+ if EVEN_M & EVEN_HEADDIM:
286
+ tl.atomic_add(dq_ptrs, dq)
287
+ elif EVEN_HEADDIM:
288
+ tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
289
+ else:
290
+ tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
291
+ dq_ptrs += BLOCK_M * stride_dqm
292
+ q_ptrs += BLOCK_M * stride_qm
293
+ do_ptrs += BLOCK_M * stride_dom
294
+ if BIAS_TYPE == 'matrix':
295
+ b_ptrs += BLOCK_M * stride_bm
296
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
297
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
298
+ _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
299
+
300
+ def init_to_zero(name):
301
+ return lambda nargs: nargs[name].zero_()
302
+
303
+ @triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
304
+ @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
305
+ @triton.jit
306
+ def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
307
+ off_hb = tl.program_id(1)
308
+ off_b = off_hb // nheads
309
+ off_h = off_hb % nheads
310
+ Q += off_b * stride_qb + off_h * stride_qh
311
+ K += off_b * stride_kb + off_h * stride_kh
312
+ V += off_b * stride_vb + off_h * stride_vh
313
+ DO += off_b * stride_dob + off_h * stride_doh
314
+ DQ += off_b * stride_dqb + off_h * stride_dqh
315
+ DK += off_b * stride_dkb + off_h * stride_dkh
316
+ DV += off_b * stride_dvb + off_h * stride_dvh
317
+ if BIAS_TYPE != 'none':
318
+ Bias += off_b * stride_bb + off_h * stride_bh
319
+ D += off_hb * seqlen_q_rounded
320
+ LSE += off_hb * seqlen_q_rounded
321
+ if not SEQUENCE_PARALLEL:
322
+ num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
323
+ for start_n in range(0, num_block_n):
324
+ _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
325
+ else:
326
+ start_n = tl.program_id(0)
327
+ _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
328
+
329
+ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
330
+ batch, seqlen_q, nheads, d = q.shape
331
+ _, seqlen_k, _, _ = k.shape
332
+ assert k.shape == (batch, seqlen_k, nheads, d)
333
+ assert v.shape == (batch, seqlen_k, nheads, d)
334
+ assert d <= 128, 'FlashAttention only support head dimensions up to 128'
335
+ assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
336
+ assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
337
+ assert q.is_cuda and k.is_cuda and v.is_cuda
338
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
339
+ has_bias = bias is not None
340
+ bias_type = 'none'
341
+ if has_bias:
342
+ assert bias.dtype in [q.dtype, torch.float]
343
+ assert bias.is_cuda
344
+ assert bias.dim() == 4
345
+ if bias.stride(-1) != 1:
346
+ bias = bias.contiguous()
347
+ if bias.shape[2:] == (1, seqlen_k):
348
+ bias_type = 'vector'
349
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
350
+ bias_type = 'matrix'
351
+ else:
352
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
353
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
354
+ bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
355
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
356
+ lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
357
+ tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
358
+ o = torch.empty_like(q)
359
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
360
+ BLOCK = 128
361
+ num_warps = 4 if d <= 64 else 8
362
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
363
+ _fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
364
+ return (o, lse, softmax_scale)
365
+
366
+ def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
367
+ if do.stride(-1) != 1:
368
+ do = do.contiguous()
369
+ batch, seqlen_q, nheads, d = q.shape
370
+ _, seqlen_k, _, _ = k.shape
371
+ assert d <= 128
372
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
373
+ assert lse.shape == (batch, nheads, seqlen_q_rounded)
374
+ assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
375
+ assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
376
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
377
+ dq_accum = torch.empty_like(q, dtype=torch.float32)
378
+ delta = torch.empty_like(lse)
379
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
380
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
381
+ _bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
382
+ has_bias = bias is not None
383
+ bias_type = 'none'
384
+ if has_bias:
385
+ assert bias.dtype in [q.dtype, torch.float]
386
+ assert bias.is_cuda
387
+ assert bias.dim() == 4
388
+ assert bias.stride(-1) == 1
389
+ if bias.shape[2:] == (1, seqlen_k):
390
+ bias_type = 'vector'
391
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
392
+ bias_type = 'matrix'
393
+ else:
394
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
395
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
396
+ bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
397
+ grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
398
+ _bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
399
+ dq.copy_(dq_accum)
400
+
401
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
402
+
403
+ @staticmethod
404
+ def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
405
+ """
406
+ qkv: (batch, seqlen, 3, nheads, headdim)
407
+ bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
408
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
409
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
410
+ """
411
+ if qkv.stride(-1) != 1:
412
+ qkv = qkv.contiguous()
413
+ o, lse, ctx.softmax_scale = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
414
+ ctx.save_for_backward(qkv, o, lse, bias)
415
+ ctx.causal = causal
416
+ return o
417
+
418
+ @staticmethod
419
+ def backward(ctx, do):
420
+ qkv, o, lse, bias = ctx.saved_tensors
421
+ assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
422
+ with torch.inference_mode():
423
+ dqkv = torch.empty_like(qkv)
424
+ _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
425
+ return (dqkv, None, None, None)
426
+ flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
427
+
428
+ class FlashAttnKVPackedFunc(torch.autograd.Function):
429
+
430
+ @staticmethod
431
+ def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
432
+ """
433
+ q: (batch, seqlen_q, nheads, headdim)
434
+ kv: (batch, seqlen_k, 2, nheads, headdim)
435
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
436
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
437
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
438
+ """
439
+ q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
440
+ o, lse, ctx.softmax_scale = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
441
+ ctx.save_for_backward(q, kv, o, lse, bias)
442
+ ctx.causal = causal
443
+ return o
444
+
445
+ @staticmethod
446
+ def backward(ctx, do):
447
+ q, kv, o, lse, bias = ctx.saved_tensors
448
+ if len(ctx.needs_input_grad) >= 3:
449
+ assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
450
+ with torch.inference_mode():
451
+ dq = torch.empty_like(q)
452
+ dkv = torch.empty_like(kv)
453
+ _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
454
+ return (dq, dkv, None, None, None)
455
+ flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
456
+
457
+ class FlashAttnFunc(torch.autograd.Function):
458
+
459
+ @staticmethod
460
+ def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
461
+ """
462
+ q: (batch_size, seqlen_q, nheads, headdim)
463
+ k, v: (batch_size, seqlen_k, nheads, headdim)
464
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
465
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
466
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
467
+ """
468
+ q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
469
+ o, lse, ctx.softmax_scale = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
470
+ ctx.save_for_backward(q, k, v, o, lse, bias)
471
+ ctx.causal = causal
472
+ return o
473
+
474
+ @staticmethod
475
+ def backward(ctx, do):
476
+ q, k, v, o, lse, bias = ctx.saved_tensors
477
+ assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
478
+ with torch.inference_mode():
479
+ dq = torch.empty_like(q)
480
+ dk = torch.empty_like(k)
481
+ dv = torch.empty_like(v)
482
+ _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
483
+ return (dq, dk, dv, None, None, None)
484
+ flash_attn_func = FlashAttnFunc.apply
generation_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.0",
4
+ "use_cache": false
5
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13e5889e2d0bd9fc4f86c918c07156f40200c866418aa548784312e707c3baa2
3
+ size 135
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfcb6d87c86d5513b17fd861c590fd941e8ce829fe4fc012e3d2e43a4b2e3497
3
+ size 135
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20d397660ace2312837d829ed480fe4ebe68fb97c50da9f5a27093185e30e2af
3
+ size 135
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b83d079b601999c848b3f3bd369097a2e20d87662b01f3cc853b213961b2a98
3
+ size 134
model.safetensors.index.json ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15601489024
4
+ },
5
+ "weight_map": {
6
+ "transformer.blocks.0.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
7
+ "transformer.blocks.0.attn.out_proj.weight": "model-00001-of-00004.safetensors",
8
+ "transformer.blocks.0.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
9
+ "transformer.blocks.0.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
10
+ "transformer.blocks.0.norm_1.weight": "model-00001-of-00004.safetensors",
11
+ "transformer.blocks.0.norm_2.weight": "model-00001-of-00004.safetensors",
12
+ "transformer.blocks.1.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
13
+ "transformer.blocks.1.attn.out_proj.weight": "model-00001-of-00004.safetensors",
14
+ "transformer.blocks.1.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
15
+ "transformer.blocks.1.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
16
+ "transformer.blocks.1.norm_1.weight": "model-00001-of-00004.safetensors",
17
+ "transformer.blocks.1.norm_2.weight": "model-00001-of-00004.safetensors",
18
+ "transformer.blocks.10.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
19
+ "transformer.blocks.10.attn.out_proj.weight": "model-00002-of-00004.safetensors",
20
+ "transformer.blocks.10.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
21
+ "transformer.blocks.10.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
22
+ "transformer.blocks.10.norm_1.weight": "model-00002-of-00004.safetensors",
23
+ "transformer.blocks.10.norm_2.weight": "model-00002-of-00004.safetensors",
24
+ "transformer.blocks.11.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
25
+ "transformer.blocks.11.attn.out_proj.weight": "model-00002-of-00004.safetensors",
26
+ "transformer.blocks.11.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
27
+ "transformer.blocks.11.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
28
+ "transformer.blocks.11.norm_1.weight": "model-00002-of-00004.safetensors",
29
+ "transformer.blocks.11.norm_2.weight": "model-00002-of-00004.safetensors",
30
+ "transformer.blocks.12.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
31
+ "transformer.blocks.12.attn.out_proj.weight": "model-00002-of-00004.safetensors",
32
+ "transformer.blocks.12.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
33
+ "transformer.blocks.12.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
34
+ "transformer.blocks.12.norm_1.weight": "model-00002-of-00004.safetensors",
35
+ "transformer.blocks.12.norm_2.weight": "model-00002-of-00004.safetensors",
36
+ "transformer.blocks.13.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
37
+ "transformer.blocks.13.attn.out_proj.weight": "model-00002-of-00004.safetensors",
38
+ "transformer.blocks.13.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
39
+ "transformer.blocks.13.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
40
+ "transformer.blocks.13.norm_1.weight": "model-00002-of-00004.safetensors",
41
+ "transformer.blocks.13.norm_2.weight": "model-00002-of-00004.safetensors",
42
+ "transformer.blocks.14.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
43
+ "transformer.blocks.14.attn.out_proj.weight": "model-00002-of-00004.safetensors",
44
+ "transformer.blocks.14.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
45
+ "transformer.blocks.14.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
46
+ "transformer.blocks.14.norm_1.weight": "model-00002-of-00004.safetensors",
47
+ "transformer.blocks.14.norm_2.weight": "model-00002-of-00004.safetensors",
48
+ "transformer.blocks.15.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
49
+ "transformer.blocks.15.attn.out_proj.weight": "model-00002-of-00004.safetensors",
50
+ "transformer.blocks.15.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
51
+ "transformer.blocks.15.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
52
+ "transformer.blocks.15.norm_1.weight": "model-00002-of-00004.safetensors",
53
+ "transformer.blocks.15.norm_2.weight": "model-00002-of-00004.safetensors",
54
+ "transformer.blocks.16.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
55
+ "transformer.blocks.16.attn.out_proj.weight": "model-00002-of-00004.safetensors",
56
+ "transformer.blocks.16.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
57
+ "transformer.blocks.16.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
58
+ "transformer.blocks.16.norm_1.weight": "model-00002-of-00004.safetensors",
59
+ "transformer.blocks.16.norm_2.weight": "model-00002-of-00004.safetensors",
60
+ "transformer.blocks.17.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
61
+ "transformer.blocks.17.attn.out_proj.weight": "model-00002-of-00004.safetensors",
62
+ "transformer.blocks.17.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
63
+ "transformer.blocks.17.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
64
+ "transformer.blocks.17.norm_1.weight": "model-00002-of-00004.safetensors",
65
+ "transformer.blocks.17.norm_2.weight": "model-00002-of-00004.safetensors",
66
+ "transformer.blocks.18.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
67
+ "transformer.blocks.18.attn.out_proj.weight": "model-00002-of-00004.safetensors",
68
+ "transformer.blocks.18.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
69
+ "transformer.blocks.18.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
70
+ "transformer.blocks.18.norm_1.weight": "model-00002-of-00004.safetensors",
71
+ "transformer.blocks.18.norm_2.weight": "model-00002-of-00004.safetensors",
72
+ "transformer.blocks.19.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
73
+ "transformer.blocks.19.attn.out_proj.weight": "model-00002-of-00004.safetensors",
74
+ "transformer.blocks.19.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
75
+ "transformer.blocks.19.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "transformer.blocks.19.norm_1.weight": "model-00002-of-00004.safetensors",
77
+ "transformer.blocks.19.norm_2.weight": "model-00002-of-00004.safetensors",
78
+ "transformer.blocks.2.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
79
+ "transformer.blocks.2.attn.out_proj.weight": "model-00001-of-00004.safetensors",
80
+ "transformer.blocks.2.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
81
+ "transformer.blocks.2.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
82
+ "transformer.blocks.2.norm_1.weight": "model-00001-of-00004.safetensors",
83
+ "transformer.blocks.2.norm_2.weight": "model-00001-of-00004.safetensors",
84
+ "transformer.blocks.20.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
85
+ "transformer.blocks.20.attn.out_proj.weight": "model-00002-of-00004.safetensors",
86
+ "transformer.blocks.20.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
87
+ "transformer.blocks.20.ffn.up_proj.weight": "model-00002-of-00004.safetensors",
88
+ "transformer.blocks.20.norm_1.weight": "model-00002-of-00004.safetensors",
89
+ "transformer.blocks.20.norm_2.weight": "model-00002-of-00004.safetensors",
90
+ "transformer.blocks.21.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
91
+ "transformer.blocks.21.attn.out_proj.weight": "model-00003-of-00004.safetensors",
92
+ "transformer.blocks.21.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
93
+ "transformer.blocks.21.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
94
+ "transformer.blocks.21.norm_1.weight": "model-00002-of-00004.safetensors",
95
+ "transformer.blocks.21.norm_2.weight": "model-00003-of-00004.safetensors",
96
+ "transformer.blocks.22.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
97
+ "transformer.blocks.22.attn.out_proj.weight": "model-00003-of-00004.safetensors",
98
+ "transformer.blocks.22.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
99
+ "transformer.blocks.22.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
100
+ "transformer.blocks.22.norm_1.weight": "model-00003-of-00004.safetensors",
101
+ "transformer.blocks.22.norm_2.weight": "model-00003-of-00004.safetensors",
102
+ "transformer.blocks.23.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
103
+ "transformer.blocks.23.attn.out_proj.weight": "model-00003-of-00004.safetensors",
104
+ "transformer.blocks.23.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
105
+ "transformer.blocks.23.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
106
+ "transformer.blocks.23.norm_1.weight": "model-00003-of-00004.safetensors",
107
+ "transformer.blocks.23.norm_2.weight": "model-00003-of-00004.safetensors",
108
+ "transformer.blocks.24.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
109
+ "transformer.blocks.24.attn.out_proj.weight": "model-00003-of-00004.safetensors",
110
+ "transformer.blocks.24.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
111
+ "transformer.blocks.24.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
112
+ "transformer.blocks.24.norm_1.weight": "model-00003-of-00004.safetensors",
113
+ "transformer.blocks.24.norm_2.weight": "model-00003-of-00004.safetensors",
114
+ "transformer.blocks.25.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
115
+ "transformer.blocks.25.attn.out_proj.weight": "model-00003-of-00004.safetensors",
116
+ "transformer.blocks.25.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
117
+ "transformer.blocks.25.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
118
+ "transformer.blocks.25.norm_1.weight": "model-00003-of-00004.safetensors",
119
+ "transformer.blocks.25.norm_2.weight": "model-00003-of-00004.safetensors",
120
+ "transformer.blocks.26.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
121
+ "transformer.blocks.26.attn.out_proj.weight": "model-00003-of-00004.safetensors",
122
+ "transformer.blocks.26.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
123
+ "transformer.blocks.26.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
124
+ "transformer.blocks.26.norm_1.weight": "model-00003-of-00004.safetensors",
125
+ "transformer.blocks.26.norm_2.weight": "model-00003-of-00004.safetensors",
126
+ "transformer.blocks.27.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
127
+ "transformer.blocks.27.attn.out_proj.weight": "model-00003-of-00004.safetensors",
128
+ "transformer.blocks.27.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
129
+ "transformer.blocks.27.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
130
+ "transformer.blocks.27.norm_1.weight": "model-00003-of-00004.safetensors",
131
+ "transformer.blocks.27.norm_2.weight": "model-00003-of-00004.safetensors",
132
+ "transformer.blocks.28.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
133
+ "transformer.blocks.28.attn.out_proj.weight": "model-00003-of-00004.safetensors",
134
+ "transformer.blocks.28.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
135
+ "transformer.blocks.28.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
136
+ "transformer.blocks.28.norm_1.weight": "model-00003-of-00004.safetensors",
137
+ "transformer.blocks.28.norm_2.weight": "model-00003-of-00004.safetensors",
138
+ "transformer.blocks.29.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
139
+ "transformer.blocks.29.attn.out_proj.weight": "model-00003-of-00004.safetensors",
140
+ "transformer.blocks.29.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
141
+ "transformer.blocks.29.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
142
+ "transformer.blocks.29.norm_1.weight": "model-00003-of-00004.safetensors",
143
+ "transformer.blocks.29.norm_2.weight": "model-00003-of-00004.safetensors",
144
+ "transformer.blocks.3.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
145
+ "transformer.blocks.3.attn.out_proj.weight": "model-00001-of-00004.safetensors",
146
+ "transformer.blocks.3.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
147
+ "transformer.blocks.3.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
148
+ "transformer.blocks.3.norm_1.weight": "model-00001-of-00004.safetensors",
149
+ "transformer.blocks.3.norm_2.weight": "model-00001-of-00004.safetensors",
150
+ "transformer.blocks.30.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
151
+ "transformer.blocks.30.attn.out_proj.weight": "model-00003-of-00004.safetensors",
152
+ "transformer.blocks.30.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
153
+ "transformer.blocks.30.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
154
+ "transformer.blocks.30.norm_1.weight": "model-00003-of-00004.safetensors",
155
+ "transformer.blocks.30.norm_2.weight": "model-00003-of-00004.safetensors",
156
+ "transformer.blocks.31.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
157
+ "transformer.blocks.31.attn.out_proj.weight": "model-00003-of-00004.safetensors",
158
+ "transformer.blocks.31.ffn.down_proj.weight": "model-00003-of-00004.safetensors",
159
+ "transformer.blocks.31.ffn.up_proj.weight": "model-00003-of-00004.safetensors",
160
+ "transformer.blocks.31.norm_1.weight": "model-00003-of-00004.safetensors",
161
+ "transformer.blocks.31.norm_2.weight": "model-00003-of-00004.safetensors",
162
+ "transformer.blocks.4.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
163
+ "transformer.blocks.4.attn.out_proj.weight": "model-00001-of-00004.safetensors",
164
+ "transformer.blocks.4.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
165
+ "transformer.blocks.4.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
166
+ "transformer.blocks.4.norm_1.weight": "model-00001-of-00004.safetensors",
167
+ "transformer.blocks.4.norm_2.weight": "model-00001-of-00004.safetensors",
168
+ "transformer.blocks.5.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
169
+ "transformer.blocks.5.attn.out_proj.weight": "model-00001-of-00004.safetensors",
170
+ "transformer.blocks.5.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
171
+ "transformer.blocks.5.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
172
+ "transformer.blocks.5.norm_1.weight": "model-00001-of-00004.safetensors",
173
+ "transformer.blocks.5.norm_2.weight": "model-00001-of-00004.safetensors",
174
+ "transformer.blocks.6.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
175
+ "transformer.blocks.6.attn.out_proj.weight": "model-00001-of-00004.safetensors",
176
+ "transformer.blocks.6.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
177
+ "transformer.blocks.6.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
178
+ "transformer.blocks.6.norm_1.weight": "model-00001-of-00004.safetensors",
179
+ "transformer.blocks.6.norm_2.weight": "model-00001-of-00004.safetensors",
180
+ "transformer.blocks.7.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
181
+ "transformer.blocks.7.attn.out_proj.weight": "model-00001-of-00004.safetensors",
182
+ "transformer.blocks.7.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
183
+ "transformer.blocks.7.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
184
+ "transformer.blocks.7.norm_1.weight": "model-00001-of-00004.safetensors",
185
+ "transformer.blocks.7.norm_2.weight": "model-00001-of-00004.safetensors",
186
+ "transformer.blocks.8.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
187
+ "transformer.blocks.8.attn.out_proj.weight": "model-00001-of-00004.safetensors",
188
+ "transformer.blocks.8.ffn.down_proj.weight": "model-00001-of-00004.safetensors",
189
+ "transformer.blocks.8.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
190
+ "transformer.blocks.8.norm_1.weight": "model-00001-of-00004.safetensors",
191
+ "transformer.blocks.8.norm_2.weight": "model-00001-of-00004.safetensors",
192
+ "transformer.blocks.9.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
193
+ "transformer.blocks.9.attn.out_proj.weight": "model-00001-of-00004.safetensors",
194
+ "transformer.blocks.9.ffn.down_proj.weight": "model-00002-of-00004.safetensors",
195
+ "transformer.blocks.9.ffn.up_proj.weight": "model-00001-of-00004.safetensors",
196
+ "transformer.blocks.9.norm_1.weight": "model-00001-of-00004.safetensors",
197
+ "transformer.blocks.9.norm_2.weight": "model-00001-of-00004.safetensors",
198
+ "transformer.mm_projector.0.bias": "model-00004-of-00004.safetensors",
199
+ "transformer.mm_projector.0.weight": "model-00004-of-00004.safetensors",
200
+ "transformer.mm_projector.2.bias": "model-00004-of-00004.safetensors",
201
+ "transformer.mm_projector.2.weight": "model-00004-of-00004.safetensors",
202
+ "transformer.norm_f.weight": "model-00003-of-00004.safetensors",
203
+ "transformer.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00003-of-00004.safetensors",
204
+ "transformer.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors",
205
+ "transformer.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors",
206
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors",
207
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors",
208
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors",
209
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors",
210
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors",
211
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors",
212
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors",
213
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors",
214
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
215
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
216
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
217
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
218
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
219
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
220
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
221
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
222
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors",
223
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors",
224
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors",
225
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors",
226
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors",
227
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors",
228
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors",
229
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors",
230
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
231
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
232
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
233
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
234
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
235
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
236
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
237
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
238
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
239
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
240
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
241
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
242
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
243
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
244
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
245
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
246
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
247
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
248
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
249
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
250
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
251
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
252
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
253
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
254
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
255
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
256
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
257
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
258
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
259
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
260
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
261
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
262
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
263
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
264
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
265
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
266
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
267
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
268
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
269
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
270
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
271
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
272
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
273
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
274
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
275
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
276
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
277
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
278
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
279
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
280
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
281
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
282
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
283
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
284
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
285
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
286
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
287
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
288
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
289
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
290
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
291
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
292
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
293
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
294
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
295
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
296
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
297
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
298
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
299
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
300
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
301
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
302
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
303
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
304
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
305
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
306
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
307
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
308
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
309
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
310
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
311
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
312
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
313
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
314
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
315
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
316
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
317
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
318
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
319
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
320
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
321
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
322
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
323
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
324
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
325
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
326
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
327
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
328
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
329
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
330
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
331
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
332
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
333
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
334
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
335
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
336
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
337
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
338
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
339
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
340
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
341
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
342
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
343
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
344
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
345
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
346
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
347
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
348
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
349
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
350
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
351
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
352
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
353
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
354
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
355
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
356
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
357
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
358
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
359
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
360
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
361
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
362
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
363
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
364
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
365
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
366
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
367
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
368
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
369
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
370
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
371
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
372
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
373
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
374
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
375
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
376
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
377
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
378
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
379
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
380
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
381
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
382
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
383
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
384
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
385
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
386
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
387
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
388
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
389
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
390
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
391
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
392
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
393
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
394
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
395
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
396
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
397
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
398
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors",
399
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors",
400
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors",
401
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors",
402
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors",
403
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors",
404
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors",
405
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors",
406
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
407
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
408
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
409
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
410
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
411
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
412
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
413
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
414
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
415
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
416
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
417
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
418
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
419
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
420
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
421
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
422
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
423
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
424
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
425
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
426
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
427
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
428
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
429
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
430
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
431
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
432
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
433
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
434
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
435
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
436
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
437
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
438
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
439
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
440
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
441
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
442
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
443
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
444
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
445
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
446
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
447
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
448
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
449
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
450
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
451
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
452
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
453
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
454
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
455
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
456
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
457
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
458
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
459
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
460
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
461
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
462
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
463
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
464
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
465
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
466
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
467
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
468
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
469
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
470
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
471
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
472
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
473
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
474
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
475
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
476
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
477
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
478
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
479
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
480
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
481
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
482
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
483
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
484
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
485
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
486
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
487
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
488
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
489
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
490
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
491
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
492
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
493
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
494
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
495
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
496
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
497
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
498
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
499
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
500
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
501
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
502
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
503
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
504
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
505
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
506
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
507
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
508
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
509
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
510
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
511
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
512
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
513
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
514
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
515
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
516
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
517
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
518
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
519
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
520
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
521
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
522
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
523
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
524
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
525
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
526
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors",
527
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors",
528
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors",
529
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors",
530
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors",
531
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors",
532
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors",
533
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors",
534
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
535
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
536
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
537
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
538
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
539
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
540
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
541
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
542
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors",
543
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors",
544
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors",
545
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors",
546
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors",
547
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors",
548
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors",
549
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors",
550
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
551
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
552
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
553
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
554
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
555
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
556
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
557
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
558
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors",
559
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors",
560
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
561
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
562
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
563
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
564
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
565
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
566
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
567
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
568
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
569
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
570
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
571
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
572
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
573
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
574
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
575
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
576
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
577
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
578
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
579
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
580
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
581
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
582
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
583
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
584
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
585
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
586
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
587
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
588
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
589
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
590
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
591
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
592
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
593
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
594
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
595
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
596
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
597
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
598
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
599
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
600
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
601
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
602
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
603
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
604
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
605
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
606
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
607
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
608
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
609
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
610
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
611
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
612
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
613
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
614
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
615
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
616
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
617
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
618
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
619
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
620
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
621
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
622
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
623
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
624
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
625
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
626
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
627
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
628
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
629
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
630
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
631
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
632
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
633
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
634
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
635
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
636
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
637
+ "transformer.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
638
+ "transformer.vision_tower.vision_tower.vision_model.head.attention.in_proj_bias": "model-00004-of-00004.safetensors",
639
+ "transformer.vision_tower.vision_tower.vision_model.head.attention.in_proj_weight": "model-00004-of-00004.safetensors",
640
+ "transformer.vision_tower.vision_tower.vision_model.head.attention.out_proj.bias": "model-00004-of-00004.safetensors",
641
+ "transformer.vision_tower.vision_tower.vision_model.head.attention.out_proj.weight": "model-00004-of-00004.safetensors",
642
+ "transformer.vision_tower.vision_tower.vision_model.head.layernorm.bias": "model-00004-of-00004.safetensors",
643
+ "transformer.vision_tower.vision_tower.vision_model.head.layernorm.weight": "model-00004-of-00004.safetensors",
644
+ "transformer.vision_tower.vision_tower.vision_model.head.mlp.fc1.bias": "model-00004-of-00004.safetensors",
645
+ "transformer.vision_tower.vision_tower.vision_model.head.mlp.fc1.weight": "model-00004-of-00004.safetensors",
646
+ "transformer.vision_tower.vision_tower.vision_model.head.mlp.fc2.bias": "model-00004-of-00004.safetensors",
647
+ "transformer.vision_tower.vision_tower.vision_model.head.mlp.fc2.weight": "model-00004-of-00004.safetensors",
648
+ "transformer.vision_tower.vision_tower.vision_model.head.probe": "model-00004-of-00004.safetensors",
649
+ "transformer.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
650
+ "transformer.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors",
651
+ "transformer.wte.weight": "model-00001-of-00004.safetensors"
652
+ }
653
+ }
modeling_mpt.py ADDED
@@ -0,0 +1,540 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A simple, flexible implementation of a GPT model.
2
+
3
+ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
+ """
5
+ from __future__ import annotations
6
+ import math
7
+ import warnings
8
+ from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from .attention import is_flash_v1_installed, is_flash_v2_installed
13
+ from .norm import NORM_CLASS_REGISTRY
14
+ if is_flash_v2_installed():
15
+ try:
16
+ from flash_attn import bert_padding
17
+ from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding
18
+ except Exception as e:
19
+ raise e
20
+ if is_flash_v1_installed():
21
+ try:
22
+ from flash_attn import bert_padding
23
+ except Exception as e:
24
+ raise e
25
+ from transformers import PreTrainedModel, PreTrainedTokenizerBase
26
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
27
+ from transformers.models.llama.modeling_llama import LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding
28
+ from transformers.models.llama.modeling_llama import LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding
29
+ from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding as HFRotaryEmbedding
30
+ from .attention import attn_bias_shape, build_attn_bias, gen_slopes
31
+ from .blocks import MPTBlock
32
+ from .custom_embedding import SharedEmbedding
33
+ from .ffn import build_ffn as build_ffn
34
+ from .configuration_mpt import MPTConfig
35
+ from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
36
+ from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
37
+ from .meta_init_context import init_empty_weights
38
+ from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
39
+ from .act_ckpt import pass_on_block_idx, build_act_ckpt_mod_to_blocks, check_mapping_blocks_overlap
40
+ try:
41
+ from .flash_attn_triton import flash_attn_func as flash_attn_func
42
+ except:
43
+ pass
44
+ import logging
45
+ log = logging.getLogger(__name__)
46
+
47
+ def gen_rotary_embedding(rope_head_dim: int, rope_impl: str, rope_theta: int, rope_dail_config: dict, rope_hf_config: dict, max_seq_len: int):
48
+ if rope_impl == 'dail':
49
+ return DAILRotaryEmbedding(dim=rope_head_dim, base=rope_theta, interleaved=False, scale_base=rope_dail_config['xpos_scale_base'] if rope_dail_config['type'] == 'xpos' else None, pos_idx_in_fp32=rope_dail_config['pos_idx_in_fp32'], device='cpu')
50
+ elif rope_impl == 'hf':
51
+ if rope_hf_config['type'] == 'no_scaling':
52
+ return HFRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, device='cpu')
53
+ elif rope_hf_config['type'] == 'linear':
54
+ return HFLinearScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
55
+ elif rope_hf_config['type'] == 'dynamic':
56
+ return HFDynamicNTKScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
57
+ raise ValueError('rope_impl needs to be either dail or hf')
58
+
59
+ def gen_attention_mask_in_length(sequence_id: Union[None, torch.Tensor], S: int, attn_uses_sequence_id: bool, attn_impl: str, attention_mask: Union[torch.Tensor, None]):
60
+ """Generates the attention mask used for sequence masking in FA v2.
61
+
62
+ Only supports sequence id based sparse attention for no attention masking or attention masking with right padding.
63
+ In case of left padding:
64
+ 1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407).
65
+ 2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention.
66
+
67
+ Args:
68
+ sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len).
69
+ S (int): Sequence length
70
+ attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking.
71
+ attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention.
72
+ attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len)
73
+
74
+ Returns:
75
+ attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
76
+ ```
77
+ [
78
+ [2, 3, 0, 0, 0, 0],
79
+ [3, 2, 0, 0, 0, 0],
80
+ [6, 0, 0, 0, 0, 0]
81
+ ]
82
+ ```
83
+ , which refers to the 3D-attention mask:
84
+ ```
85
+ [
86
+ [
87
+ [1, 0, 0, 0, 0, 0],
88
+ [1, 1, 0, 0, 0, 0],
89
+ [0, 0, 1, 0, 0, 0],
90
+ [0, 0, 1, 1, 0, 0],
91
+ [0, 0, 1, 1, 1, 0],
92
+ [0, 0, 0, 0, 0, 1]
93
+ ],
94
+ [
95
+ [1, 0, 0, 0, 0, 0],
96
+ [1, 1, 0, 0, 0, 0],
97
+ [1, 1, 1, 0, 0, 0],
98
+ [0, 0, 0, 1, 0, 0],
99
+ [0, 0, 0, 1, 1, 0],
100
+ [0, 0, 0, 0, 0, 1]
101
+ ],
102
+ [
103
+ [1, 0, 0, 0, 0, 0],
104
+ [1, 1, 0, 0, 0, 0],
105
+ [1, 1, 1, 0, 0, 0],
106
+ [1, 1, 1, 1, 0, 0],
107
+ [1, 1, 1, 1, 1, 0],
108
+ [1, 1, 1, 1, 1, 1]
109
+ ]
110
+ ]
111
+ ```.
112
+ (The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .)
113
+ """
114
+ attention_mask_in_length = None
115
+ if sequence_id is not None and attn_uses_sequence_id and (attn_impl == 'flash'):
116
+ if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]:
117
+ raise NotImplementedError('Left padding is not supported with flash attention when attn_uses_sequence_id is set to True.')
118
+ if S != sequence_id.shape[-1]:
119
+ raise ValueError(f'Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]}).')
120
+ if attention_mask is not None:
121
+ sequence_id = sequence_id.masked_fill(~attention_mask, 0)
122
+ attention_mask_in_length = torch.nn.functional.one_hot(sequence_id)
123
+ if attention_mask is not None:
124
+ attention_mask_in_length = attention_mask_in_length.masked_fill(~attention_mask.unsqueeze(-1), 0)
125
+ attention_mask_in_length = attention_mask_in_length.sum(dim=1)
126
+ attention_mask_in_length = torch.nn.functional.pad(attention_mask_in_length, (0, S - attention_mask_in_length.shape[-1]), mode='constant', value=0)
127
+ return attention_mask_in_length
128
+
129
+ def gen_flash_attn_padding_info(bsz: int, S: int, past_key_len: int, device: torch.device, attention_mask_in_length: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None):
130
+ flash_attn_padding_info = {}
131
+ if attention_mask_in_length is None:
132
+ key_padding_mask = attention_mask
133
+ if key_padding_mask is None:
134
+ key_padding_mask = torch.ones((bsz, past_key_len + S), dtype=torch.bool, device=device)
135
+ query_padding_mask = key_padding_mask[:, -S:]
136
+ unpadding_function = bert_padding.unpad_input
137
+ else:
138
+ key_padding_mask = attention_mask_in_length
139
+ query_padding_mask = attention_mask_in_length
140
+ unpadding_function = bert_padding.unpad_input_for_concatenated_sequences
141
+ _, indices_q, cu_seqlens_q, max_seqlen_q = unpadding_function(torch.empty(bsz, S, 1, device=device), query_padding_mask)
142
+ _, indices_k, cu_seqlens_k, max_seqlen_k = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
143
+ _, indices_v, _, _ = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
144
+ flash_attn_padding_info['indices_q'] = indices_q
145
+ flash_attn_padding_info['indices_k'] = indices_k
146
+ flash_attn_padding_info['indices_v'] = indices_v
147
+ flash_attn_padding_info['cu_seqlens_q'] = cu_seqlens_q
148
+ flash_attn_padding_info['cu_seqlens_k'] = cu_seqlens_k
149
+ flash_attn_padding_info['max_seqlen_q'] = max_seqlen_q
150
+ flash_attn_padding_info['max_seqlen_k'] = max_seqlen_k
151
+ return flash_attn_padding_info
152
+
153
+ def apply_sequence_id(attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int) -> torch.Tensor:
154
+ seq_len = sequence_id.shape[-1]
155
+ if seq_len > max_seq_len:
156
+ raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={max_seq_len}')
157
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
158
+ cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
159
+ min_val = torch.finfo(attn_bias.dtype).min
160
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
161
+ return attn_bias
162
+
163
+ class MPTPreTrainedModel(PreTrainedModel):
164
+ config_class = MPTConfig
165
+ base_model_prefix = 'model'
166
+ _no_split_modules = ['MPTBlock']
167
+
168
+ def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool:
169
+ return isinstance(module, MPTBlock)
170
+
171
+ class MPTModel(MPTPreTrainedModel):
172
+
173
+ def __init__(self, config: MPTConfig):
174
+ config._validate_config()
175
+ super().__init__(config)
176
+ self.attn_impl = config.attn_config['attn_impl']
177
+ self.prefix_lm = config.attn_config['prefix_lm']
178
+ self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
179
+ self.alibi = config.attn_config['alibi']
180
+ self.alibi_bias_max = config.attn_config['alibi_bias_max']
181
+ self.learned_pos_emb = config.learned_pos_emb
182
+ if config.init_device == 'mixed':
183
+ if dist.get_local_rank() == 0:
184
+ config.init_device = 'cpu'
185
+ else:
186
+ config.init_device = 'meta'
187
+ if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
188
+ norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
189
+ raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
190
+ norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
191
+ self.embedding_fraction = config.embedding_fraction
192
+ self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
193
+ if self.learned_pos_emb:
194
+ self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
195
+ self.emb_drop = nn.Dropout(config.emb_pdrop)
196
+ self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
197
+ for i, block in enumerate(self.blocks):
198
+ block.block_idx = i
199
+ block.max_block_idx = config.n_layers - 1
200
+ pass_on_block_idx(block)
201
+ self.norm_f = norm_class(config.d_model, device=config.init_device)
202
+ self.rope = config.attn_config['rope']
203
+ self.rope_impl = None
204
+ if self.rope:
205
+ self.rope_impl = config.attn_config['rope_impl']
206
+ self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
207
+ if config.init_device != 'meta':
208
+ log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
209
+ self.apply(self.param_init_fn)
210
+ self.is_causal = not self.prefix_lm
211
+ self._attn_bias_initialized = False
212
+ self.attn_bias = None
213
+ self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
214
+ if config.no_bias:
215
+ for module in self.modules():
216
+ if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
217
+ log.info(f'Removing bias from module={module!r}.')
218
+ module.register_parameter('bias', None)
219
+ if hasattr(module, 'use_bias'):
220
+ log.info(f'Setting use_bias=False for module={module!r}.')
221
+ module.use_bias = False
222
+ log.debug(self)
223
+ log.debug(f"Using {self.config.init_config['name']} initialization.")
224
+
225
+ def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
226
+ return self.wte
227
+
228
+ def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
229
+ self.wte = value
230
+
231
+ @torch.no_grad()
232
+ def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
233
+ if not self._attn_bias_initialized:
234
+ if self.attn_bias_shape:
235
+ self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
236
+ self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
237
+ self._attn_bias_initialized = True
238
+ if self.attn_impl == 'flash':
239
+ return (self.attn_bias, attention_mask)
240
+ if self.attn_bias is not None:
241
+ self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
242
+ attn_bias = self.attn_bias
243
+ if self.prefix_lm:
244
+ assert isinstance(attn_bias, torch.Tensor)
245
+ assert isinstance(prefix_mask, torch.Tensor)
246
+ attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
247
+ if self.attn_uses_sequence_id and sequence_id is not None:
248
+ assert isinstance(attn_bias, torch.Tensor)
249
+ attn_bias = apply_sequence_id(attn_bias, sequence_id, self.config.max_seq_len)
250
+ if attention_mask is not None:
251
+ s_k = attention_mask.shape[-1]
252
+ if attn_bias is None:
253
+ attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
254
+ else:
255
+ _s_k = max(0, attn_bias.size(-1) - s_k)
256
+ attn_bias = attn_bias[:, :, :, _s_k:]
257
+ if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
258
+ raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
259
+ min_val = torch.finfo(attn_bias.dtype).min
260
+ attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
261
+ return (attn_bias, attention_mask)
262
+
263
+ def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
264
+ s_k, s_q = attn_bias.shape[-2:]
265
+ if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
266
+ raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
267
+ seq_len = prefix_mask.shape[-1]
268
+ if seq_len > self.config.max_seq_len:
269
+ raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
270
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
271
+ causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
272
+ prefix = prefix_mask.view(-1, 1, 1, seq_len)
273
+ cannot_attend = ~torch.logical_or(causal, prefix.bool())
274
+ min_val = torch.finfo(attn_bias.dtype).min
275
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
276
+ return attn_bias
277
+
278
+ def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
279
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
280
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
281
+ if attention_mask is not None:
282
+ attention_mask = attention_mask.bool()
283
+ if prefix_mask is not None:
284
+ prefix_mask = prefix_mask.bool()
285
+ if not return_dict:
286
+ raise NotImplementedError('return_dict False is not implemented yet for MPT')
287
+ if output_attentions:
288
+ if self.attn_impl != 'torch':
289
+ raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
290
+ if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
291
+ raise NotImplementedError('MPT does not support training with left padding.')
292
+ if self.prefix_lm and prefix_mask is None:
293
+ raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
294
+ if self.training:
295
+ if self.attn_uses_sequence_id and sequence_id is None:
296
+ raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
297
+ elif self.attn_uses_sequence_id is False and sequence_id is not None:
298
+ warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
299
+ if input_ids is not None and inputs_embeds is not None:
300
+ raise ValueError('You cannot specify both input_ids and inputs_embeds.')
301
+ elif input_ids is not None:
302
+ bsz = input_ids.size(0)
303
+ S = input_ids.size(1)
304
+ x = self.wte(input_ids)
305
+ input_device = input_ids.device
306
+ elif inputs_embeds is not None:
307
+ bsz = inputs_embeds.size(0)
308
+ S = inputs_embeds.size(1)
309
+ x = inputs_embeds
310
+ input_device = inputs_embeds.device
311
+ else:
312
+ raise ValueError('You must specify input_ids or inputs_embeds')
313
+ #assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
314
+ rotary_emb_w_meta_info = None
315
+ past_position = 0
316
+ if past_key_values is not None:
317
+ if len(past_key_values) != self.config.n_layers:
318
+ raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
319
+ past_position = past_key_values[0][0].size(1)
320
+ if self.attn_impl == 'torch':
321
+ past_position = past_key_values[0][0].size(3)
322
+ if self.learned_pos_emb or self.rope:
323
+ if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
324
+ raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
325
+ if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
326
+ pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
327
+ if attention_mask is not None:
328
+ pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
329
+ if self.learned_pos_emb:
330
+ x = x + self.wpe(pos)
331
+ elif self.rope and self.rope_impl == 'hf':
332
+ rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
333
+ elif self.rope and self.rope_impl == 'dail':
334
+ rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
335
+ if self.embedding_fraction == 1:
336
+ x = self.emb_drop(x)
337
+ else:
338
+ x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
339
+ assert isinstance(self.emb_drop, nn.Module)
340
+ x = self.emb_drop(x_shrunk)
341
+ attn_bias, attention_mask = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
342
+ attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
343
+ alibi_slopes = None
344
+ if self.alibi and self.attn_impl == 'flash':
345
+ alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
346
+ presents = () if use_cache else None
347
+ if use_cache and past_key_values is None:
348
+ past_key_values = [() for _ in range(self.config.n_layers)]
349
+ all_hidden_states = () if output_hidden_states else None
350
+ all_self_attns = () if output_attentions else None
351
+ flash_attn_padding_info = {}
352
+ if self.attn_impl == 'flash':
353
+ flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
354
+ for b_idx, block in enumerate(self.blocks):
355
+ if output_hidden_states:
356
+ assert all_hidden_states is not None
357
+ all_hidden_states = all_hidden_states + (x,)
358
+ past_key_value = past_key_values[b_idx] if past_key_values is not None else None
359
+ x, attn_weights, present = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
360
+ if presents is not None:
361
+ presents += (present,)
362
+ if output_attentions:
363
+ assert all_self_attns is not None
364
+ all_self_attns = all_self_attns + (attn_weights,)
365
+ x = self.norm_f(x)
366
+ if output_hidden_states:
367
+ assert all_hidden_states is not None
368
+ all_hidden_states = all_hidden_states + (x,)
369
+ return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
370
+
371
+ def param_init_fn(self, module: nn.Module) -> None:
372
+ init_fn_name = self.config.init_config['name']
373
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
374
+
375
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
376
+ return _fsdp_wrap_fn(self, module)
377
+
378
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
379
+ return isinstance(module, MPTBlock)
380
+
381
+ class MPTForCausalLM(MPTPreTrainedModel):
382
+
383
+ def __init__(self, config: MPTConfig):
384
+ super().__init__(config)
385
+ log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
386
+ self.transformer: MPTModel = MPTModel(config)
387
+ self.lm_head = None
388
+ if not config.tie_word_embeddings:
389
+ self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
390
+ self.lm_head._fsdp_wrap = True
391
+ for child in self.transformer.children():
392
+ if isinstance(child, torch.nn.ModuleList):
393
+ continue
394
+ if isinstance(child, torch.nn.Module):
395
+ child._fsdp_wrap = True
396
+ self.logit_scale = None
397
+ if config.logit_scale is not None:
398
+ logit_scale = config.logit_scale
399
+ if isinstance(logit_scale, str):
400
+ if logit_scale == 'inv_sqrt_d_model':
401
+ logit_scale = 1 / math.sqrt(config.d_model)
402
+ else:
403
+ raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
404
+ self.logit_scale = logit_scale
405
+
406
+ def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
407
+ return self.transformer.get_input_embeddings()
408
+
409
+ def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
410
+ self.transformer.set_input_embeddings(value)
411
+
412
+ def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]:
413
+ if self.lm_head is not None:
414
+ return self.lm_head
415
+ return self.transformer.get_input_embeddings()
416
+
417
+ def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]) -> None:
418
+ if self.lm_head is not None:
419
+ self.lm_head = new_embeddings
420
+ else:
421
+ if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)):
422
+ raise ValueError('new_embeddings must be an instance of SharedEmbedding ' + f'or nn.Embedding, but got {type(new_embeddings)}.')
423
+ warnings.warn('Using `set_output_embeddings` to set the embedding layer of ' + 'MPTForCausalLM with tied weights. Given weights are tied, ' + 'using `set_input_embeddings` is recommended over using ' + '`set_output_embeddings`.')
424
+ self.transformer.set_input_embeddings(new_embeddings)
425
+
426
+ def tie_weights(self) -> None:
427
+ self.lm_head = None
428
+
429
+ def set_decoder(self, decoder: MPTModel) -> None:
430
+ self.transformer = decoder
431
+
432
+ def get_decoder(self) -> MPTModel:
433
+ return self.transformer
434
+
435
+ def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
436
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
437
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
438
+ outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds)
439
+ if self.lm_head is not None:
440
+ logits = self.lm_head(outputs.last_hidden_state)
441
+ else:
442
+ out = outputs.last_hidden_state
443
+ out = out.to(self.transformer.wte.weight.device)
444
+ logits = self.transformer.wte(out, True)
445
+ if self.logit_scale is not None:
446
+ if self.logit_scale == 0:
447
+ warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
448
+ logits *= self.logit_scale
449
+ loss = None
450
+ if labels is not None:
451
+ _labels = torch.roll(labels, shifts=-1)
452
+ _labels[:, -1] = -100
453
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
454
+ return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
455
+
456
+ def param_init_fn(self, module: nn.Module) -> None:
457
+ init_fn_name = self.config.init_config['name']
458
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
459
+
460
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
461
+ return _fsdp_wrap_fn(self, module)
462
+
463
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
464
+ """The MPT activation checkpointing (act ckpt) function.
465
+
466
+ When `activation_checkpointing` in fsdp_config is set to true, this function will be called on all the modules in the FSDP wrapped model and determine whether a given module should be activation checkpointed. It checks the checkpointing target (`activation_checkpointing_target` in `model`) which can be specified as below:
467
+ 1. null (or no such field): The whole MPTBlock will be activation checkpointed on all layers
468
+ 2. a list of modules to act ckpt on all layers, e.g.,
469
+ activation_checkpointing_target:
470
+ - grouped_query_attention
471
+ - mptmlp
472
+ 3. a dictionary of module name with target_blocks, e.g.,
473
+ activation_checkpointing_target:
474
+ {
475
+ "mptblock": target_blocks_1,
476
+ "grouped_query_attention": target_blocks_2
477
+ }
478
+ target_blocks (target_blocks_1, target_blocks_2 above) can be:
479
+ - a single integer n: the first n transformer block will be activation checkpointed
480
+ - a string of first-n, middle-m, last-k, range-i-j: the first n, the middle m, the last k, or the range [i, j) layers will be activation checkpointed. E.g, 'first-2, last-2' means the first 2 and last 2 transformer blocks will be activation checkpointed
481
+ middle-m is range [start, end) where ``start = max(max_block_idx // 2 - m // 2, 0), end = min(start + m, max_block_idx + 1)``
482
+ - a list of integers corresponds to the list of transformer block ids, e.g., [2] means the second transformer block will be activation checkpointed. [2, 3] means the second and third transformer blocks will be activation checkpointed
483
+ - a list of mixed integers and strings of first-n, middle-m, last-k, range-i-j
484
+
485
+ An example in yaml config file:
486
+ fsdp_config:
487
+ activation_checkpointing: true
488
+ model:
489
+ activation_checkpointing_target:
490
+ {
491
+ "mptblock": 'first-5',
492
+ "grouped_query_attention": 'last-35'
493
+ }
494
+ """
495
+ if not hasattr(module, 'block_idx'):
496
+ log.debug(f'{module.__class__.__name__} cannot be activation checkpointed. Only transformer block or its submodules are eligible for activation checkpointing.')
497
+ return False
498
+ act_ckpt_target = getattr(self.config, 'activation_checkpointing_target', None)
499
+ act_ckpt_mod_to_blocks = build_act_ckpt_mod_to_blocks(act_ckpt_target, MPTBlock, module.max_block_idx)
500
+ check_mapping_blocks_overlap(act_ckpt_mod_to_blocks, module.max_block_idx)
501
+ for k in act_ckpt_mod_to_blocks.keys():
502
+ if isinstance(module, k):
503
+ blocks = act_ckpt_mod_to_blocks[k]
504
+ return True if blocks == -1 else module.block_idx in blocks
505
+ return False
506
+
507
+ def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
508
+ attention_mask = kwargs['attention_mask'].bool()
509
+ if attention_mask[:, -1].sum() != attention_mask.shape[0]:
510
+ raise NotImplementedError('MPT does not support generation with right padding.')
511
+ if self.transformer.attn_uses_sequence_id and self.training:
512
+ sequence_id = torch.zeros_like(input_ids[:1])
513
+ else:
514
+ sequence_id = None
515
+ if past_key_values is not None:
516
+ input_ids = input_ids[:, -1].unsqueeze(-1)
517
+ if self.transformer.prefix_lm:
518
+ prefix_mask = torch.ones_like(attention_mask)
519
+ if kwargs.get('use_cache') == False:
520
+ raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
521
+ else:
522
+ prefix_mask = None
523
+ if inputs_embeds is not None and past_key_values is None:
524
+ model_inputs = {'inputs_embeds': inputs_embeds}
525
+ else:
526
+ model_inputs = {'input_ids': input_ids}
527
+ model_inputs.update({'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)})
528
+ return model_inputs
529
+
530
+ @staticmethod
531
+ def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
532
+ """Used by HuggingFace generate when using beam search with kv-caching.
533
+
534
+ See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
535
+ for an example in transformers.
536
+ """
537
+ reordered_past = []
538
+ for layer_past in past_key_values:
539
+ reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
540
+ return reordered_past
norm.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Optional, Type, Union
2
+ import torch
3
+
4
+ def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
5
+ if torch.is_autocast_enabled():
6
+ if tensor.device.type == 'cuda':
7
+ dtype = torch.get_autocast_gpu_dtype()
8
+ elif tensor.device.type == 'cpu':
9
+ dtype = torch.get_autocast_cpu_dtype()
10
+ else:
11
+ raise NotImplementedError()
12
+ return tensor.to(dtype=dtype)
13
+ return tensor
14
+
15
+ class LPLayerNorm(torch.nn.LayerNorm):
16
+
17
+ def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
18
+ super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
19
+
20
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
21
+ module_device = x.device
22
+ downcast_x = _cast_if_autocast_enabled(x)
23
+ downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
24
+ downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
25
+ with torch.autocast(enabled=False, device_type=module_device.type):
26
+ return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
27
+
28
+ def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
29
+ output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
30
+ if weight is not None:
31
+ return output * weight
32
+ return output
33
+
34
+ class RMSNorm(torch.nn.Module):
35
+
36
+ def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
37
+ super().__init__()
38
+ self.eps = eps
39
+ if weight:
40
+ self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
41
+ else:
42
+ self.register_parameter('weight', None)
43
+
44
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
45
+ return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
46
+
47
+ class LPRMSNorm(RMSNorm):
48
+
49
+ def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
50
+ super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
51
+
52
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ downcast_x = _cast_if_autocast_enabled(x)
54
+ downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
55
+ with torch.autocast(enabled=False, device_type=x.device.type):
56
+ return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
57
+ NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|SYSTEM|>",
4
+ "<|USER|>",
5
+ "<|RESPONSE|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "mask_token": {
22
+ "content": "<mask>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "pad_token": "<unk>",
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,1758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<pad>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "70000": {
44
+ "content": "<unused0>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "70001": {
52
+ "content": "<unused1>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "70002": {
60
+ "content": "<unused2>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "70003": {
68
+ "content": "<unused3>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "70004": {
76
+ "content": "<unused4>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "70005": {
84
+ "content": "<unused5>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "70006": {
92
+ "content": "<unused6>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "70007": {
100
+ "content": "<unused7>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "70008": {
108
+ "content": "<unused8>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "70009": {
116
+ "content": "<unused9>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "70010": {
124
+ "content": "<unused10>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "70011": {
132
+ "content": "<unused11>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "70012": {
140
+ "content": "<unused12>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "70013": {
148
+ "content": "<unused13>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "70014": {
156
+ "content": "<unused14>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "70015": {
164
+ "content": "<unused15>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "70016": {
172
+ "content": "<unused16>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "70017": {
180
+ "content": "<unused17>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "70018": {
188
+ "content": "<unused18>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "70019": {
196
+ "content": "<unused19>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "70020": {
204
+ "content": "<unused20>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "70021": {
212
+ "content": "<unused21>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "70022": {
220
+ "content": "<unused22>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "70023": {
228
+ "content": "<unused23>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "70024": {
236
+ "content": "<unused24>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "70025": {
244
+ "content": "<unused25>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "70026": {
252
+ "content": "<unused26>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "70027": {
260
+ "content": "<unused27>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "70028": {
268
+ "content": "<unused28>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "70029": {
276
+ "content": "<unused29>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "70030": {
284
+ "content": "<unused30>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "70031": {
292
+ "content": "<unused31>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "70032": {
300
+ "content": "<unused32>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "70033": {
308
+ "content": "<unused33>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "70034": {
316
+ "content": "<unused34>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "70035": {
324
+ "content": "<unused35>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "70036": {
332
+ "content": "<unused36>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "70037": {
340
+ "content": "<unused37>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "70038": {
348
+ "content": "<unused38>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "70039": {
356
+ "content": "<unused39>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "70040": {
364
+ "content": "<unused40>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "70041": {
372
+ "content": "<unused41>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "70042": {
380
+ "content": "<unused42>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "70043": {
388
+ "content": "<unused43>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "70044": {
396
+ "content": "<unused44>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "70045": {
404
+ "content": "<unused45>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "70046": {
412
+ "content": "<unused46>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "70047": {
420
+ "content": "<unused47>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "70048": {
428
+ "content": "<unused48>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "70049": {
436
+ "content": "<unused49>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "70050": {
444
+ "content": "<unused50>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "70051": {
452
+ "content": "<unused51>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "70052": {
460
+ "content": "<unused52>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "70053": {
468
+ "content": "<unused53>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "70054": {
476
+ "content": "<unused54>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "70055": {
484
+ "content": "<unused55>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "70056": {
492
+ "content": "<unused56>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "70057": {
500
+ "content": "<unused57>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "70058": {
508
+ "content": "<unused58>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "70059": {
516
+ "content": "<unused59>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "70060": {
524
+ "content": "<unused60>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "70061": {
532
+ "content": "<unused61>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "70062": {
540
+ "content": "<unused62>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "70063": {
548
+ "content": "<unused63>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "70064": {
556
+ "content": "<unused64>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "70065": {
564
+ "content": "<unused65>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "70066": {
572
+ "content": "<unused66>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "70067": {
580
+ "content": "<unused67>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "70068": {
588
+ "content": "<unused68>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "70069": {
596
+ "content": "<unused69>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "70070": {
604
+ "content": "<unused70>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "70071": {
612
+ "content": "<unused71>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "70072": {
620
+ "content": "<unused72>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "70073": {
628
+ "content": "<unused73>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "70074": {
636
+ "content": "<unused74>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "70075": {
644
+ "content": "<unused75>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "70076": {
652
+ "content": "<unused76>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "70077": {
660
+ "content": "<unused77>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "70078": {
668
+ "content": "<unused78>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "70079": {
676
+ "content": "<unused79>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "70080": {
684
+ "content": "<unused80>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "70081": {
692
+ "content": "<unused81>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "70082": {
700
+ "content": "<unused82>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "70083": {
708
+ "content": "<unused83>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "70084": {
716
+ "content": "<unused84>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "70085": {
724
+ "content": "<unused85>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "70086": {
732
+ "content": "<unused86>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "70087": {
740
+ "content": "<unused87>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "70088": {
748
+ "content": "<unused88>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "70089": {
756
+ "content": "<unused89>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "70090": {
764
+ "content": "<unused90>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "70091": {
772
+ "content": "<unused91>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "70092": {
780
+ "content": "<unused92>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "70093": {
788
+ "content": "<unused93>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "70094": {
796
+ "content": "<unused94>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "70095": {
804
+ "content": "<unused95>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "70096": {
812
+ "content": "<unused96>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "70097": {
820
+ "content": "<unused97>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "70098": {
828
+ "content": "<unused98>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "70099": {
836
+ "content": "<unused99>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "70100": {
844
+ "content": "<unused100>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "70101": {
852
+ "content": "<unused101>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "70102": {
860
+ "content": "<unused102>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "70103": {
868
+ "content": "<unused103>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "70104": {
876
+ "content": "<unused104>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "70105": {
884
+ "content": "<unused105>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "70106": {
892
+ "content": "<unused106>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "70107": {
900
+ "content": "<unused107>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "70108": {
908
+ "content": "<unused108>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "70109": {
916
+ "content": "<unused109>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "70110": {
924
+ "content": "<unused110>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "70111": {
932
+ "content": "<unused111>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "70112": {
940
+ "content": "<unused112>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "70113": {
948
+ "content": "<unused113>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "70114": {
956
+ "content": "<unused114>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "70115": {
964
+ "content": "<unused115>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "70116": {
972
+ "content": "<unused116>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "70117": {
980
+ "content": "<unused117>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "70118": {
988
+ "content": "<unused118>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "70119": {
996
+ "content": "<unused119>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "70120": {
1004
+ "content": "<unused120>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "70121": {
1012
+ "content": "<unused121>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "70122": {
1020
+ "content": "<unused122>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "70123": {
1028
+ "content": "<unused123>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "70124": {
1036
+ "content": "<unused124>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "70125": {
1044
+ "content": "<unused125>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "70126": {
1052
+ "content": "<unused126>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "70127": {
1060
+ "content": "<unused127>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "70128": {
1068
+ "content": "<unused128>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "70129": {
1076
+ "content": "<unused129>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "70130": {
1084
+ "content": "<unused130>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "70131": {
1092
+ "content": "<unused131>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "70132": {
1100
+ "content": "<unused132>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "70133": {
1108
+ "content": "<unused133>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "70134": {
1116
+ "content": "<unused134>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "70135": {
1124
+ "content": "<unused135>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "70136": {
1132
+ "content": "<unused136>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "70137": {
1140
+ "content": "<unused137>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "70138": {
1148
+ "content": "<unused138>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "70139": {
1156
+ "content": "<unused139>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "70140": {
1164
+ "content": "<unused140>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "70141": {
1172
+ "content": "<unused141>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "70142": {
1180
+ "content": "<unused142>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "70143": {
1188
+ "content": "<unused143>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "70144": {
1196
+ "content": "<unused144>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "70145": {
1204
+ "content": "<unused145>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "70146": {
1212
+ "content": "<unused146>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "70147": {
1220
+ "content": "<unused147>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "70148": {
1228
+ "content": "<unused148>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "70149": {
1236
+ "content": "<unused149>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "70150": {
1244
+ "content": "<unused150>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "70151": {
1252
+ "content": "<unused151>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "70152": {
1260
+ "content": "<unused152>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "70153": {
1268
+ "content": "<unused153>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "70154": {
1276
+ "content": "<unused154>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "70155": {
1284
+ "content": "<unused155>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "70156": {
1292
+ "content": "<unused156>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "70157": {
1300
+ "content": "<unused157>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "70158": {
1308
+ "content": "<unused158>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "70159": {
1316
+ "content": "<unused159>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "70160": {
1324
+ "content": "<unused160>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "70161": {
1332
+ "content": "<unused161>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "70162": {
1340
+ "content": "<unused162>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "70163": {
1348
+ "content": "<unused163>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "70164": {
1356
+ "content": "<unused164>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "70165": {
1364
+ "content": "<unused165>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "70166": {
1372
+ "content": "<unused166>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "70167": {
1380
+ "content": "<unused167>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "70168": {
1388
+ "content": "<unused168>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "70169": {
1396
+ "content": "<unused169>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "70170": {
1404
+ "content": "<unused170>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "70171": {
1412
+ "content": "<unused171>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "70172": {
1420
+ "content": "<unused172>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "70173": {
1428
+ "content": "<unused173>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "70174": {
1436
+ "content": "<unused174>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "70175": {
1444
+ "content": "<unused175>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "70176": {
1452
+ "content": "<unused176>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "70177": {
1460
+ "content": "<unused177>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "70178": {
1468
+ "content": "<unused178>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "70179": {
1476
+ "content": "<unused179>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "70180": {
1484
+ "content": "<unused180>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "70181": {
1492
+ "content": "<unused181>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "70182": {
1500
+ "content": "<unused182>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "70183": {
1508
+ "content": "<unused183>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "70184": {
1516
+ "content": "<unused184>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "70185": {
1524
+ "content": "<unused185>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "70186": {
1532
+ "content": "<unused186>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "70187": {
1540
+ "content": "<unused187>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "70188": {
1548
+ "content": "<unused188>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "70189": {
1556
+ "content": "<unused189>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "70190": {
1564
+ "content": "<unused190>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "70191": {
1572
+ "content": "<unused191>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "70192": {
1580
+ "content": "<unused192>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "70193": {
1588
+ "content": "<unused193>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "70194": {
1596
+ "content": "<unused194>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "70195": {
1604
+ "content": "<unused195>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "70196": {
1612
+ "content": "<unused196>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "70197": {
1620
+ "content": "<unused197>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "70198": {
1628
+ "content": "<unused198>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "70199": {
1636
+ "content": "<unused199>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "70200": {
1644
+ "content": "<unused200>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "70201": {
1652
+ "content": "<unused201>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "70202": {
1660
+ "content": "<unused202>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "70203": {
1668
+ "content": "<unused203>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "70204": {
1676
+ "content": "<unused204>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "70205": {
1684
+ "content": "<unused205>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "70206": {
1692
+ "content": "<unused206>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "70207": {
1700
+ "content": "<unused207>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "70208": {
1708
+ "content": "<unused208>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "70209": {
1716
+ "content": "<|SYSTEM|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "70210": {
1724
+ "content": "<|USER|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "70211": {
1732
+ "content": "<|RESPONSE|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ }
1739
+ },
1740
+ "additional_special_tokens": [
1741
+ "<|SYSTEM|>",
1742
+ "<|USER|>",
1743
+ "<|RESPONSE|>"
1744
+ ],
1745
+ "bos_token": "<s>",
1746
+ "clean_up_tokenization_spaces": true,
1747
+ "eos_token": "</s>",
1748
+ "mask_token": "<mask>",
1749
+ "model_input_names": [
1750
+ "input_ids",
1751
+ "attention_mask"
1752
+ ],
1753
+ "model_max_length": 4096,
1754
+ "pad_token": "<unk>",
1755
+ "padding_side": "right",
1756
+ "tokenizer_class": "PreTrainedTokenizerFast",
1757
+ "unk_token": "<unk>"
1758
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb5a6bc0ff399e149a474126d4a0dc7a10affb4a6a9bb06cb2ac98e5b92022a5
3
+ size 129
warnings.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class VersionedDeprecationWarning(DeprecationWarning):
2
+ """A custom deprecation warning class that includes version information.
3
+
4
+ Attributes:
5
+ message (str): The deprecation message describing why the feature is deprecated.
6
+ remove_version (str): The version in which the feature will be removed.
7
+
8
+ Example:
9
+ >>> def deprecated_function():
10
+ ... warnings.warn(
11
+ ... VersionedDeprecationWarning(
12
+ ... "Function XYZ is deprecated.",
13
+ ... remove_version="2.0.0"
14
+ ... )
15
+ ... )
16
+ ...
17
+ >>> deprecated_function()
18
+ DeprecationWarning: Function XYZ is deprecated. It will be removed in version 2.0.0.
19
+ """
20
+
21
+ def __init__(self, message: str, remove_version: str) -> None:
22
+ super().__init__(message + f' It will be removed in version {remove_version}.')